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The application of dispe'rsion relations to the analysis of the energy dependence of scattering 
(and reaction) amplitudes near thresholds of new reactions is discussed. General expres­
sions are obtained which characterize the nonmonotonic behavior of forward-scattering am­
plitudes as functions of the energy, The energy dependence of one of the amplitudes for 
elastic scattering of y-ray quanta by deuterons is examined near the threshold for photo­
disintegration of the deuteron. 

l . An examination of the scattering of y-ray 
quanta by nucleons near the threshold for pion 
production 1 has shown that the dispersion re­
lations automatically lead to the appearance of 
discontinuities of the derivative of the real part 
of the amplitude, if one takes account of the en­
ergy dependence of the reaction cross section 
near threshold.* Within the framework of the 
dispersion relations the problem of the appear­
ance of discontinuities of the derivative of the 
forward scattering amplitude involves the anal­
ysis of integrals of the form 

k~ p\ dw o(w) 
4,;2 .) k w + W 0 ' 

where the usual notation is used, and the total 
cross section a ( w) includes both the elastic 
scattering cross section as ( w) and the inelastic 
interaction cross section ac ( w). 

The behavior of ac ( w) near the threshold of 
the binary reaction 

a+b-->c+d 

involving particles with masses JJ. (incident), M 
(target), m androl is given by the expression 

ac (w) = Bqcfkc. 

where qc and kc are the momenta before and 
after the collision (in the c.m.s.) and B is a 
constant. It is not hard to see that 

(2) 

(3) 

(qcfkc) 2 = (w- Wt) (w + Wt- <'I) I (w 2 -!12), (4) 

where w = ( k2 + JJ- 2 ) 112 is the total energy of the 

*The nonmonotonic behavior of the cross section near the 
threshold has been treated phenomenologically in a diploma 
research by G. Ustinova, and also by Capps and Holladay.' 

incident particle in the laboratory system (l.s .), 

Wt - !L = [(rol + m) 2 - (M + !L) 2 ]/2M (5) 

is the threshold energy of the reaction (2), and 

(6) 

The application of dispersion relations makes 
it possible to examine both "local effects" near 
the very threshold, which in some cases lead to 
sharp "peaks," "dips," and "steps," and also 
the general influence of inelastic processes oc­
curring in some energy range on the processes at 
a given energy. We recall that the unitarity rela­
tions for the S matrix make it possible to take in­
to account the influence on a given process of other 
processes occurring at the same energy. 

2. The study of y-N scattering has shown that 
there are "local effects" in only two of the six 
scalar amplitudes needed to describe the transi­
tion matrix in this case. The presence of other 
strongly energy-dependent amplitudes hinders the 
analysis. For a detailed analysis of the inelastic 
processes it is necessary to examine the disper­
sion relations for nonvanishing momentum trans­
fers Q2, and possibly also double dispersion re­
lations. 

In the present paper we confine ourselves to 
the examination of dispersion relations in the total 
energy for Q2 = 0 for a scalar function A ( w), 
which is the trace of the scattering matrix, 

A ( w) = Sp M ( w, Q2 = 0), {7) 

and whose imaginary part is related to the total 
cross section. The contribution of inelastic proc­
esses to D = Re A { w) is characterized by the two 
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integrals 

(8) 

(9) 

where a'(: ( w) is the total cross section of reaction 
(2) and u~ ( w) is the cross section of the reaction 
cross-symmetrical to (2). 

Being interested in the energy dependence of the 
real part of the quantity A ( w) in Eq. (7), let us 
calculate the integrals 

k~ "'~' dro a; k~B+ 
--P ------n -w · 47t• k ro -I- ro - 4'"• ( o), 

' 0 
"'t 

(10) 

(11) 

in these integrals the range of integration is from 
the threshold wt to w1, the limit of the region of 
the s state in uc in which Eq. (3) is still valid. 
If we introduce the notations 

a(wo) = (wo-mt) (w 0 + Wt-11), 

a(-wo) = (wo + mt) (wo- Wt +II), 

R = (wl- Wt) (wl + mt-11), 

it is not hard to show that 

(12) 

It follows from (14) and (14') that the first de­
rivative has a discontinuity at the point w0• The 
resulting energy dependence has the characteris­
tic feature that the derivative is infinite on the 
side w0 < Wt and has a finite value when we ap­
proach the point w0 = Wt from the region 
Wo < Wt• 

It might seem that the quantity k~II (- w0 ) ob­
tained as the result of substituting (3) and (4) in 
(9) would also have a discontinuity of the deriva­
tive at w0 = Wt - o. On changing the sign of w0 

in (14), however, we easily verify that this is not 
so. The values of the derivative of k~II (- w0 ) 

calculated with approach to w0 = Wt from the two 
sides are identical. Thus although in a relativis­
tic treatment cross-symmetrical inelastic proc­
esses indeed contribute to the real part of the 
scattering amplitude, they do not lead to nonmono­
tonic energy dependence of the amplitude. 

The application of dispersion relations enables 
us to get detailed information about the magnitude 
and half-width of the anomaly near the threshold. 
The half-width E of the drop in the region w0 < wt 
can be estimated roughly in the following way. 
Near w0 =wt ( w0 < Wt) the argument of the arc 
tangent is large; using this fact, we find 

'ljJ(wo) = v=a n. 

Defining the half-width E by the condition 

D (mt- e)= i-D (wt) 

and using Eq. (15), we then get 

(15) 

(16) 

D (rut)- (B/4n) V(wt -w0) (w 0 + mt-11) = i-D (mt), (17) k~TI (wo) =- {4 (wo)- f (I + Wo/tL) 4 (tL) 

- f ( 1 - Wo/11· )<J! (- (J·)} , (13) from which we have 

where 

4 (p.) = V- a (tL) -l~ +tan-1(2p. -1i) (rol- p.) + 2a (!-') J, 
2 2 V -a(p.) R 

4(-tL) =V-a(-tL)[T 

- tan-1 (21-' + o) (rol + 1-'l -2a(-J-<) J. 
2f-a(--J-<)R 

(13') 

For the function l{! ( w) at the point Wo we get the 
expressions 

4 (wo) = V _ a (wo) [~ + tan-1 (2ro0 -1i) (ro1- roo)+ 2a (roo)·], 
2 2 V- a ( ro0) R ~ 

Wo < Wf; (14) 

4(wo) = -v a (wo) In! 2a(roo) + (2roo-o)(rol- roo) +2 v~ I 
(rol- roo) (2rot- o) ' 

(14') 

The expression for k~II (- w0 ) is obtained from 
(13) and (14) by the replacement w0 --- w0• 

e = i-(wt -11/2)-1 [4nD (wt) IBJ2. (18) 

In the limiting case in which the contribution to 
D ( Wt) not associated with the expressions (10) 
and (11) can be neglected, 

D (wt) = BJ (wt)l4n2 , (19) 

and from Eq. (13) we have the result that 

J (wt) = + [(1 + Wtlf.t) 'ljJ (!1) +(I - wt/[L) 4 (- tL)]. (20) 

3. Let us consider the photoproduction of neu­
tral pions 

Y+P->p+n° 

near the threshold of the reaction 

(21) 

(22) 

In this energy range it suffices to consider the 
electric-dipole transition. We denote by E0 and 
E+ the transition elements for neutral and 
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charged mesons, respectively. From the condition 
of unitarity and the experimental fact that 
Re E0 ::::: 0, we get the result 

(23) 

where a3 and a 1 are the phase shifts for Jr-N 
scattering. Substituting the experimental data for 
aa, a 1, and E+, we get 

the derivative from the side w0 < Wt is infinite. 
That it is precisely the first derivative that is in­
finite is due to the form of the relations (3) and 
(4). The behavior of the cross section for the re­
action (2), when its products are in states with 
nonvanishing angular momentum l, is given by 
the expression 

a~l) = B(l) l(w - Wt) (w + Wt- <'I)/ (w 2 - f.l-2) ] 1+'!•. (30) 

Im£0 = V2/3(a3-al) q(/q~·V q+/v·3,3·I0-15 em, (24) Substitution of (3) in (8) makes the Zth derivative 

where 

( v is the energy of the photon, and a3, a 1 are the 
scattering lengths). The anomalies at the thresh­
old are determined by an integral of the form 

P ~· dv (v2 -v~1 )'1•(v2 -V~t)'1•;v';,(v-vo), (25) 
Y+f 

which undoubtedly gives "peak" singularities. 
In analogy with this, in the general case we can 

consider the cross section of the reaction 

a +b ->c +d (26) 

near the threshold of the reaction 

(27) 

If the threshold of reaction (27) is far from that of 
reaction (26), we can always find an energy range 
where 

ImM (ab -->cd) = M (ab -->ef) M+ (ef -->cd) + ... = Aq + ... ; 
(28) 

here A is a weakly varying function of the energy 
and q is the relative momentum of the system ef. 
The other terms in the sum (28) are also slowly 
varying functions of the energy if there are no 
thresholds of other reactions in the neighborhood. 
In this case the dispersion integral has the usual 
form, and we can determine the magnitude and 
half-width of the "peak" or "dip" in the same 
way as for the case of scattering. 

In the case of such a process as the photopro­
duction of pions 

Im M (ab _, cd) = A qq(/ + ... , (29) 

since the threshold of the reaction ab - ef is 
close to that of the reaction ab- cd. In these 
cases the dispersion integrals are rather com­
plicated and we have not been able to carry out 
the integration. 

4. It thus follows from the conditions of 
causality and unitarity, together with Eqs. (3) and 
(4), that the first derivative of the real part of the 
scattering amplitude has a discontinuity, and that 

infinite. 
It is perhaps interesting to note that, unlike the 

nonrelativistic treatment, this use of the disper­
sion relations has not required the assumption 
that the partial amplitudes are analytic. It has 
turned out that it is enough to use only the ana­
lytic character of the scattering amplitude with 
respect to the total energy, with a bounded value 
of the momentum transfer, Q2 < Qinax· 

As Baz' has pointed out, the uni tarity of the S 
matrix has the consequence that as the number of 
channels increases the effect in each channel de­
creases. An analysis of y-N scattering near the 
threshold for photoproduction of pions, for which 
there are "peak" effects in only two out of six 
scalar functions, has shown that there is also a 
smearing of the effect with increase of the spin 
of the particles. 

An important feature of the theory of disper­
sion relations is the discussion of the convergence 
of the dispersion integrals at high energies or, 
what is the same thing, of the number of subtrac­
tions. The main calculations in the present paper 
are made for dispersion relations with one sub­
traction. In the case of dispersion relations with­
out subtraction one must make the replacement 

(31) 

With sufficiently high experimental accuracy the 
difference between Eq. (8) and Eq. (31) can give 
information about the number of subtractions. 

Let us note briefly what sort of singularities 
can appear near the threshold of the reaction 

a+b-->c+d+f· (32) 

By substituting in Eq. (8) the cross section of the 
reaction (32) in the form 

ac = B'k-;1P:max= r (w- w1) 2 

(reaction products in the s state), we get 

-(wt-w0) 2 ] +2(wo-wt)(wl-wt) 

+(wo-wt) 2 ln I (wl-wo)/(wt -wo) I}, (33) 
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which leads to a logarithmic infinity in the second 
derivative of D ( w) with respect to w. 

For a reaction with four particles in a final 
s state the quantity ( w0 - wt )2 ln I Wt - w0 I is re­
placed by ( w0 - wt )5 ln I w0 - Wt I . Similar beha­
vior of the real part of the scattering amplitude 
appears at the thresholds of all reactions. 

An example of the application of dispersion re­
lations that is well known in the literature is the 
analysis of the coherent scattering of photons in 
the Coulomb field of a nucleus3 ( cf. also reference 
4). It is not hard to convince oneself that near 
w = 2m ( 1' = w/2m = 1) -the threshold for pro­
duction of an electron-positron pair- the real part 
of the scattering amplitude has an energy depend­
ence of the type xk ln x (x = 1'- 1 ). To see this 
we have only to examine the expression for the 
real part of the amplitude: 

z• ( e• )s { 1 D {w) = m 4n rrr [2Cdy) -Ddy)l 

+ 2~" [(109 + ~!) EI(y) 

- ( 67- .!!___) (1- ___!_) F 1 (y)J- ___!_- .J!__} 
\ 12 12 91' 4 ' 

(34) 

where 
y 

Cdy) = Re~ arc~inx cosh-1 (; )dx, CI(l) = 1.62876; 
0 

y 

D (y) = Re r cosh-'(1/X) dx 
1 ) (1-x2)';, ' 

0 

D 1 (1) = 1,83193; 

and K ( 1') and E ( 1') are the complete elliptic in­
tegrals of the first and second kinds. As is well 
known, for 1 - y2 « 1 [A = 1n ( 4 (1 - 1'2 )-1/2 ), 

K (y) =A+ }(A- 1)(1- r 2) + k<A -f)(l - 12) 2 

+ ::s (A - :~ ) (I - lz)s + ... ' 
E (T) = 1 +}(A - ~) (1- 12) + k (A-~) (I- 12)2 + ... , 

(35) 

which indeed shows that the dependence is of the 
form ~ ln x. It is not hard to check that the scat­
tering of light by light near the threshold of the 
reaction 1' + 1'- e+ + e- is a process, well 
known in quantum electrodynamics, for which the 
amplitude is characterized by a "local" anomaly 
( cf. Figs. 2-4 in the paper by Karplus and Neu­
man5)*. The amplitude for the Compton effect near 

*Regarding effects of the Coulomb interaction see papers 
by Baz'6 and by Fonda and Newton.' 

the threshold of the reaction 1' + e - 2e + e+ has 
the characteristic dependence x2 ln x. 

5. The elastic scattering of 1' rays by deuterons 
near the threshold for photodisintegration of the 
deuteron is an example of a process for which use 
of dispersion relations is necessary for the anal­
ysis of the anomaly near the threshold. The non­
monotonic behavior near the threshold in this case 
comes from the magnetic-dipole disintegration. 
The electric-dipole disintegration leads to appre­
ciable changes in the energy dependence of the 
amplitude for elastic y-d scattering in a certain 
relatively wide range of energies. 

The amplitude for forward elastic y-d scatter­
ing can be represented in the form 

e; T;, e, = Ae'e + iBS [e'e] +} C [(Se) (Se') + (Se') (Se)] 

+} D [(S [kxel)(S [kxe'l)+ (S [kxe'l)(S [kxel)l. (36) 

The cross section for scattering of unpolarized 
1' rays by unpolarized deuterons then takes the 
form 

cr5 (0°) = lA +f(C +D) 12 + fs-IC +D 12 

+fiBI2 +fiD-Cj2 , (37) 

and we have 

ka1 = 4~t Im (A + f C + ~ D). 

By means of the dispersion relation for the 
quantity L =A + z/3C + %D. 

00 

ReL(w)=-~-l--2w'p\ ImL(m') d' 
Md ' " ) m' (w'2 - w') (!) ' 

"'d 

(38) 

where wd is the threshold for photodisintegration 
of the deuteron, let us examine the effect of ine­
lastic processes on the energy dependence of the 
real part of the amplitude L. In the calculation of 
the dispersion integral it is convenient to use the 
theoretical expressions for the cross sections for 
photodisintegration of the deuteron ( cf., e.g., ref­
erence 8 ). 

Let us begin with the examination of the "local 
effects." The expression for the cross section for 
magnetic-dipole disintegration is 

a(m) _ ~ ~ (_!. )2 _ 2 (1- 1)'1• (1 + VS'/T€1)2 

c - 3 1w Me (p.p P.n) 1 [1-1 + e' I I e II ' (39) 

where y = w/ I E I , w being the energy of the photon; 
I E I = 2 .22 Mev and E' ~ 7 0 kev are the binding 
energies of the np system in the 3S1 and 1S0 

states; and the rest of the notation is as usual. 
Because of the factor [ 1' - 1 + E' I /E I r 1 the ex­
pression (39) does not admit of the simple ana­
lytic continuation 
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x=Vy-l~iJxJ, 

since in this case Y<Tc (m) goes to infinity below the 
threshold at I K 12 = E' I I € I • Substitution of Eq. (39) 
in the dispersion integral 

')'~ r d')'O"~m) (')') 
Zdro)=sZ'P) 2 

" 1 ')'•- 'To 

for Yo ;r o gives 

ZL (ro) = f 2~c• Mec2 (tJ·p- [Ln)2 (I + Vs' I J s J )2 

{V1-T~e(l- )+ v~ -~- 2T~V~} 
X o-'l'o io li+'J'o a o(a•-')'~) ' 

where o = 1 - E' I I € I , () ( x) = 1 for x 2:: 1, and 
() ( x) = 0 for x < 1; for Yo = o 

ZL(o) =f 2~c• ~c• ([Lp-[Ln)2 (1 +'Vs'IJsJ)2 

(40) 

x{VI + o/2o-2/o +2VE'7TET f3o +Vis lis' /2}. 
(41) 

The dependence of the quantity .6.L (Yo) = 
ZL (y0 )/(e2/2Mc2) on the y-ray energy is shown 
in the diagram (curve 1) 

-o.sr-o---------i---------vlvo 

For extreme values of y0 we get from Eq. (40) 

2 e 2 ( • /€' )2 
t.dro) = 3 Me• (fl-p- fl-n) I +v TET 

2 e 2 e' 1 2 V- 2 

::::::: 3 Me• ((Lp- (Ln) (I+ f&l) 4 io• io~ I; (42) 

At the photodisintegration threshold with 1 - o = 

1/30. 

On the side of energies smaller than the thresh­
old energy the half-width of the peak is somewhat 
smaller than E', i.e., about 50 or 60 kev. 

The contribution of the cross section for dipole 
absorption 

a( d)= 4n: ~ ~ _jy --1)''• 
c Me• e ')'3 

(44) 

at D = Re L is of the form 

t.P (ro) = 2Mc2 Zp (r0) 1 e2 

= 2 {i;;-2 [(I- io)'1•6 (I- io) +(I+ ioY1•- 2]-314}. 
(45) 

The quantity .6.p = .6.p (Yo ) is shown in the diagram 
by curve 2. In the limiting cases 

t.P(io) = ~~~. io~ I; 

t.p(jp)=-~, io~l. 

At the threshold for photodisintegration 

11p(l) = 0,156. 

(46) 

(47) 

The total effect of the dipole and magnetic­
dipole disintegrations on the real part of the am­
plitude L is shown in the diagram by curve 3. 
Right at the threshold the effect of photodisinte­
gration leads to a change of the amplitude by about 
40 percent. 

The contribution of photodisintegration of the 
deuteron to the polarizability of the deuteron can 
be seen from Eqs. (42) and (46). Since the value 
of the cross section for photodisintegration of the 
deuteron at high energies is larger than the sum 
of the expressions (39) and (44), the estimates ob­
tained here can be regarded as lower limits on the 
quantities, although the contribution of high en­
ergies is small. 

The treatment carried through here for one 
amplitude of the y-d scattering can serve as an 
indication that inclusion of the effects of inelastic 
processes, and primarily those of the photodisin­
tegration of the deuteron, in the analysis of elas­
tic y-d scattering can be important over a wide 
range of energies. 

Similar effects must naturally occur also in the 
scattering of y rays by heavier nuclei. A study of 
the elastic scattering of y rays by nuclei shows9 

that for quite a number of elements the cross sec­
tion for nuclear scattering of y rays near the 
threshold of the reaction ( y, n) is characterized 
by a peak of considerable height with an energy 
width of about ± 2 Mev, which is evidently due to 
nonmonotonic effects near the threshold. Fur­
ther improvement of the accuracy of the experi­
mental data on elastic scattering of y rays and on 
the energy dependence of the cross sections of 
( y, n) reactions near threshold is necessary for 
a more reliable analysis of this effect. 
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