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Dispersion formulas are deduced in a theory in which the S matrix is assumed to be linear 
with respect to resonances. The indefinite phase shifts of the complex reduced half-widths 
are calculated in a general form on the basis of the S matrix unitarity condition. Cases are 
considered when an isolated level corresponding to compound nucleus formation lies in the op
tical resonance region or when two levels of the compound nucleus overlap or a set of 
weakly overlapping levels exist in the optical resonance region. In all calculations the as
sumption is made that the levels of the compound nucleus do not overlap the nuclear reaction 
thresholds. 

IT is known that the separate resonances in the 
scattering cross sections and nuclear reactions 
are described quite well by the Breit-Wigner for
mula. For overlapping levels the dispersion for
mula may, in principle, be obtained by using Wig
ner's R -matrix technique.1•2 However, the calcu
lation of the corresponding matrix expressions in
volves algebraic difficulties and the final formulae 
are cumbersome. Clearly, it is more natural to 
derive the dispersion formulae on the basis of a 
variant of a theory proposed earlier by the author. 3 

In this variant the resonance part of the S mat
rices is introduced in the form of a simple sum of 
the resonance levels, which are responsible for the 
formation of the compound nucleus. The remaining 
uniform part of the S matrix changes slightly over 
energy levels of the order of the width of the reso
nance curves, if r « I E - Et I where Et is the 
threshold energy closest to E. The dispersion 
formula for these energies has the following form 

(1) 

Here the indices c' and c define the totality of quan
tum numbers aslJM. The quantities uA.c in the 
customary notation, (see, e.g., reference 2) are 

(2) 

Here both UA.c and 'YA.c are, generally speaking, 
complex. Assuming the approximation rA./1 E- Et I 
« 1, 

The summation over c includes only the open 

channels. The parameter NA. is found to be greater 
than or equal to unity. 

We note that the dispersion expansion (1) with 
characteristics (2) and (3) can be deduced from 
the formal Kapur-Peierls' theory. 4 It is known 
that the fundamental deficiency of this theory is 
the dependence of the resonance parameters EA. 
and YA.c on the energy of the incident particles. 
However, in the energy range ~ far from the 
threshold, the relative change in these val
ues does not exceed the order of magnitude 
~/IE- Et 1. In order to obtain the formula (1) 
and relation (3) from the theory,4 it is sufficient 
to change the normalization of the basic function 
'ltA. in such a way that 

Here ~A. is the solution satisfying the complex 
conjugate boundary conditions. 

The amplitudes of the derived half-widths vA.c 
in (1) are complex. This doubles the number of 
undetermined parameters in the dispersion for
mula and at a first glance detracts from the value 
of formula (1). However, the phase of YA.c can 
be determined from the unitary condition for the 
S matrix. In the expansion (1) the summation over 
A. applies to all the quasi -stationary states, lying 
in the given energy range, with lifetimes signifi
cantly larger than the time of flight of the particles 
past the nucleus. If there is an isolated group of 
levels, separated from the others, then the sum 
over A. averaged over a sufficiently large interval 
of energy does not give a contribution, and the 
mean S coincides with the uniform part of (1). 
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The matrix S describes a non-compound process, 
weakly dependent on the energy; for energies which 
are not too large this matrix has only diagonal ele
ments, corresponding to scattering by the optical 
potential. 

ISOLATED RESONANCE LEVEL AND SCATTER
ING BY THE OPTICAL POTENTIAL 

The uniform part of (1) is equal to the diagonal 
matrix of the optical scattering {) 0 , 0 sgpt. It is 
convenient to introduce the logarithmic derivative 
of the optical wave functions 

Lo = R [-1- o(ruc)] • (5) 
c rue or R 

sgpt then has the following form 

s~pt = n~ (L~-L;) I (L~- Lc) = n~ exp (2io~). (6) 

Here Q0 and L0 are as in the work of Lane and 
Thomas. 2 We retain in the expansion (1) the sum
mation over I\. Over all the energy levels we must 
have: 

"" J• J L.J Sc"e' (E) Sc•e (E) = Oe•c· (7) 
e" 

For simplicity we consider (7) near E Rl E/\.. 
Using (2) and (3), we obtain 

U1.eiU~e = N"J..S~pt. (8) 
It is evident that N/\. = 1, and 'Y/\.c is com-

plex. The argument of 'Y/\.c equals, to withfn 1r, 

the optical phase o~. which is determined by (6). 
The fact that the 'Y/\.c are complex in no way af
fects the nuclear-reaction cross sections, for when 
c' ¢ c only the moduli of 'Y/\.c occur in the cross 
section. 

The elastic scattering cross section is propor
tional to 

I S~e- I j2 = I I - (Sopt)-1 + 2i P e I 'he 12 12 (9) 
e E~-E+if"J../2' 

where E~ = Re E/\.. In this way we have obtained 
the rather obvious result that the scattering poten
tial in the dispersion formula reduces to the optical 
potential; the exponent in the second term on the 
right-hand side of (9) comprises, for small ener
gies, not the nuclear radius but the amplitude of 
scattering by the optical potential. 

TWO OVERLAPPING LEVELS AND SCATTERING 
BY THE OPTICAL POTENTIAL 

The uniform part of the S matrix in this case is 
equal to (6). The unitary condition (7) is considered 
near the poles of E/\., I\= 1 and 2. The simple 
equations below are obtained, 

'lle exp (- 2ill~) = au'l'~e + a21'l';c, 

12c exp (- 2io~) = a21'l';c + a22'l';. 

with coefficients 

(10) 

al'-). = a~l'- = 2i~Pe'l';c'l'"J..e I (E;- E1,). (11) 
c 

From these it is evident that a 11 equals N1 and 
a22 equals N2• The equations (1 0) lead to the con
elusion that 

(12) 

From this it follows that a12 is purely imaginary, 
and the parameters N1 and N2 are equal, 

N~ = N~ = N2 = I + I a 12 j2• (13) 

The phase ( arg 'Y/\.c - o~), which we designate cp/\.c• 
arises as a consequence of the overlapping levels. 
From (10) it will be easily found that 

l 'hc I= ( N2+ 1--2Ncos2q:>2e )''• = ( N2-1 )''• 
'12c N2 - 1 N 2 + 1 - 2N cos 2q:>1e , ' 

(14) 

- tancpxe tantp2c = (N- I) I (N + I). (15) 

Together with (3), these equations determine the 
phases of the derived half widths and the normaliz
ing parameters N. It is evident that the deviation 
of N from unity characterizes the degree of inter
action between the dissociated states with I\ = 1 
and I\= 2. For r « D the difference N- 1 is, 
to an order of magnitude, equal to (r/D)2• The 
formulae obtained give new, rather more graphic 
parameters of the resonance curves. Furthermore 
they remain valid in the energy range close to 
optical resonance. 

A GROUP OF OVERLAPPING LEVELS WITH 
THE APPROXIMATION r /D « 1 

In this case the phases Yyc and the parameter 
Nl\. are determined to an equal degree by the two 
neighboring levels, and the previous formula is 
rendered useless. Let us assume that r « D 
for all the levels from the group under consider
ation. The unitary condition for E Rl E/\. gives 

j"J..e exp (- 2ill~) = ~ ai'-"J..'l';c. 
1'-

With an accuracy to higher-order terms 

j"J..c = 'l'~e (I + icp"J..c) exp (ill~). 

(16) 

(17) 

Here Y~c are real positive or negative quantities. 
The phases 'P/\.c to an accuracy 1r equal ( arg Y/\.c 
- o~ ). Equation (16) shows that cp/\.c "' r /D and 
to a first approximation 
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(18) 

Here the summation applies to the indices !J. not 
equal to A.. The parameter NA. differs from unity 
by a quantity of order (r/D)2• Equation (12) with 
!J. = v gives 

(19) 

Formulae (1)- (3), (18), and (19) enable us to 
calculate the cross section with an accuracy up to 
magnitudes of a higher order of smallness com
pared with (r /D )2• For c' ~ c, the order of the 
terms that are linear with the phase rises. The 
result is that the overlapping of the levels changes 
the cross section of the reaction only by a magni
tude of the order of ( r /D )2• The addition to the 
cross section of elastic scattering and the total 
cross section, however, turns out to be of first 
order in r /D. 

As a special case let us examine a group of 
levels which lie in a range of small energies, 

When (kR) « r/D we have Qc ~ 1 and o~ ~ 0. 
By means of (17) we find that 

f~.cf1. (!- 4cp~.,(E-E~)), a,~~ r 
~. (E- £~)2 + r~ 14 ~. 

r~., = 2 ~ P, (1~y. (21) 

The formula (21) shows that overlapping levels 
lead to the appearance of terms, which destroy the 
symmetry of the curves with respect to the reso
nances E~. In order of magnitude, these terms 
are equal to r /D. 

In conclusion I wish to thank Professor A. S. 
Davydov for his consideration and valuable advice. 
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