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A variational principle is formulated which is invariant with respect to the normalization of 
the wave functions and which can be used in the case when the wave functions of the initial 
and final states are not orthogonal. The problem of the uniqueness of perturbation theory 
in this case is considered. The possibility of employing the variational principle for the 
solution of problems concerning the decay of stationary states and charge exchange is dis­
cussed. The basic equations for charge exchange at large impact parameters are derived 
from the variational principle. 

1. INTRODUCTION 

IT occurs frequently in the solution of nonstation­
ary problems in quantum mechanics that the wave 
functions of the initial and final states are not or­
thogonal, becoming orthogonal only in the limit 
t- ± oo. Processes of this kind are, for example, 
all collisions involving a redistribution and, in 
particular, the simplest of these collisions, the 
charge-exchange collision. If these problems are 
solved by perturbation theory, assuming that the 
transition probability is small, we are faced with 
the non-uniqueness of the basic formulas of per­
turbation theory. Indeed, adding an arbitrary func­
tion of time to the perturbation changes the transi­
tion probability calculated by perturbation theory. 
On the other hand, this addition can be eliminated 
from the energy operator by an elementary uni­
tary transformation and, evidently, cannot affect 
the true transition probability. This fact was noted 
in a number of papers 1 and ways of removing this 
non-uniqueness were proposed. 2 

It is well known that the basic formulas of per­
turbation theory can be derived from a variational 
principle. It is therefore natural to investigate 
this non-uniqueness by variational methods. The 
usual formulation of the variational principle for 
nonstationary problems (see, for example, refer­
ence 3, Sec. 25) does not immediately lead to a 
solution of this problem. It turns out, however, 
that one can formulate a new variational principle, 
using a stationary expression for the transition 
probability which is invariant with respect to mul­
tiplications of the trial functions by arbitrary func-

tions of time. This makes it possible to avoid the 
above-mentioned non -uniqueness. 

The new variational principle is very conve­
nient for the investigation of the decay of nonsta­
tionary states. Using it for processes of the 
charge exchange type, we are able to explain why 
the usual formulas of perturbation theory are un­
satisfactory in this case and to establish which 
properties of the trial functions are essential for 
the correct formulation of the problem. By taking 
account of these properties we can give a more 
consistent derivation of Bates' 2 basic equations 
for charge exchange for large impact parameters 
from the variational principle. 

2. FORMULATION OF THE PROBLEM AND THE 
VARIATIONAL PRINCIPLE 

Consider the problem of finding that solution 
w1 of the Schrodinger equation 

H'Y = ih a'Y ; at, 

which satisfies the initial condition 

The quantity 

(1) 

(2) 

(3) 

which is usually the unknown, determines the prob­
ability for the transition of the system from the 
state cp 1 at time t 1 to the state cp 2 at time t2• 

We assume that the operator H is self-conjugate 
and can depend on the time. The functions cp 1 and 
cp 2 are in general nonorthogonal. 
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For the formulation of the variational principle 
we consider the functional 

t, 

J (<1>2, <D1) = ~ dt ~ <D; (t) (H- ih a 1 at) <1>1 (t) d't, (4) 
t, 

where the functions .Pt and .P2 satisfy the condi­
tions 

(5) 

and make a variation of this functional in the neigh­
borhood of the exact solutions 'Itt and >It2 of the 
Schrodinger equation (1) satisfying the condition (2) 
and the condition 

(6) 

respectively. Using the hermiticity of the operator 
H, integrating by parts, and imposing the conditions 
<'>'ltt(tt) = o>It2(t2 ) = 0, we obtain 

J ('¥2 + il'¥2, '¥1 + il'¥1) =- ih ~ 'Y; (t2) il'¥1 (t2) d't · 
t, 

+ ~ dt ~ o'Y; ( H- ih :t)o'Y1 d't. (7) 
t, 

From this we immediately find the stationary ex­
pression for a12 : 

t, 

a12 = St {~<1>2 (i2) <D1 (t2) d't + i~ ~ dt ~ <D; ( H- ih .:t) <D1 d't}. 

~ (8) 

Substituting in this formula functions .Pt and 
«P 2 which are close to the exact wave functions 'Itt 
and llt2, we obtain an approximate value for at2, 

which differs from the exact value only in second 
order of smallness. 

The first term on the right hand side of (8) rep­
resents the value of at2 as computed directly by 
(3) with the help of the approximate function .Pt. 
In cases when the second term does not vanish we 
can improve the value of a12 by using (8); this im­
provement is often quite essential. 

It is seen from (7) that (8) gives the exact value 
for a 12 also if only one of the functions .Pt, .P2 is 
replaced by the exact wave function, assuming that 
the other is arbitrary, satisfying only condition (5). 

The asymmetry of (8) with respect to tt and 
t2 is only seeming, for the same formula can be 
written in the form 

a12 = St {~<I>; {t1) <D1 {t1) d't 

t, • 

+ i~ ~dt~((H-iht~)<1>2] <l>1d't}. (9) 
t, 

By going to the limit of the stationary problem we 
can obtain the usual formulation of the variational 
principle3 for the scattering phases and amplitudes 
in perturbation theory. 

3-. PERTURBATION THEORY. NON-UNIQUENESS 
OF THE BASIC FORMULAS 

Let us now consider the case when the energy 
operator can be split up into a perturbation and an 
unperturbed part in two ways: 

(10) 

We assume that the solutions of the Schrodinger 
equations for the unperturbed operators are known: 

H!'f1=iha~11at, 41(t1)=cp1, 

H2~2 = ih a~2 1 at, ~2 (t2) = 'P2· 

(11) 

(12) 

Regarding the perturbation as small, we can then 
assume that the functions lf!t and ¢2 are close to 
the corresponding solutions 'Itt and IJ12 of equa­
tion (1). Substituting the functions lf!t and ¢2 in 
the functional (8), we obtain an expression for at2 

in the first order of perturbation theory:* 
t, 

al2 = ~ cp; ~1 (t2) d't + i~ ~ dt ~ ~;vl~1 d't. (13) 
t, 

In order that this expression be invariant with 
respect to the addition of an arbitrary function of 
time to the perturbation Vt, it is necessary that 
the functions lf!t and ¢2 are orthogonal for all 
times between tt and t2• This condition is satis­
fied in the usual case, when Vt = V2, and lf!t and 
¢2 are functions corresponding to different sta­
tionary states of a system with the energy oper­
ator Ht = H2• However, this orthogonality re­
quirement is evidently not fulfilled in this case 
if cpt = cp 2, i.e., if we ask for the probability that 
the system remains in its previous state. It is 
true that the quantity a12 is then not necessarily 
small, but in contrast to the usual formulation of 
perturbation theory, the use of the variational 
principle is not based on the assumption that at2 

is small. 
An example of the type of problem that can be 

treated in this way is the charge exchange problem, 
i.e., the transition of an electron from one atomic 
system to another in the collision of the two. In 
the simplest approximation we can assume that 
the atomic systems move along classical trajec­
tories (for sufficiently large impact parameters, 
simply along a straight line) and describe the in­
teraction with the electron by the effective poten­
tials Ut and U2• Then the energy operator has 
the form 

H = - + v 2 + U r(r- R I 2) + U 2 (r + R I 2), (14) 

*If the wave functions t/J, and t/J2 are substituted in the 
functional (9), this quantity will be expressed in terms of the 
matrix element of the operator V2 • 
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R=p+vt, pv=O. (15) 

The potentials Ui and U2 play the role of the per­
turbations vi and v2, and the functions 1/Ji and 1/!2 
have the form 

<P1 = X1 (r + R I 2) exp {- f- ivr- i (£1 + v2 I 8) t}, 

<P2 = X2 (r- R / 2) exp {+ ivr- i (£2 + v2 1 8) t}, (16) 

where Xi and x2 satisfy the equations 

[- + V'2 + U 2 (r)] X1 (r) = £1X1 (r), 

[-T Y'2 + UI(r)] xdr)= £2X2 (r)· (17) 

Then the coefficient ai2 which determines the prob­
ability for charge exchange in a transition from the 
state Xi to the state x2 has in first order perturba­
tion theory the form 

1+00 
. \ R) (. a12 = Tfl \ dtet(E,-E.) t ~ z; (r- 2 U 1 '{- i )xl(r + ~ )e-ivr d't. 

~ u~ 

Since the functions Xi and x2 are nonorthogonal 
for finite t, this expression changes if a function 
of time is added to U i· The problem of how to 
choose this function has been discussed by Bates.2 

4. INVARIANT VARIATIONAL PRINCIPLE 

We now discuss how the formulation of the vari­
ational principle must be modified in order that the 
substitution of arbitrary trial functions should not 
lead to the above-mentioned non-uniqueness and 
that the expression for the transition probability 
be automatically invariant with respect to addition 
of an arbitrary function of time to the energy op­
erator. 

Let us assume that we know functions <I>i and 
<1>2 which are close to the exact wave functions wi 
and w2. Substituting these functions in (8) we ob­
tain an approximate value for a 12 • Then we mul­
tiply the function <I>i by fi and <1>2 by f2, where 
fi and f2 are some functions of time which satisfy 
the conditions 

(19) 

We require that the functional be stationary with 
respect to arbitrary variations Ofi and 6£2 with 
the condition 

(20) 

Using the expressions (8) and (9) for the functional 
we then obtain equations for the functions fi and 
f2: 

ih[l ~ cD; <D1 d' = t 1 ~ <D; (H- ih a 1 at) cD1 d', (21) 

ihf; ~ cD; cD1 d, = r; ~ t<H- ih a 1 at) <I>2J* cD1 d,. (22) 

Solving these equations with the initial conditions 
(19), we find 

t 

f1 = exp {- ~ ~ Ldt}, (23) 
t. 

L = ~ cD; (H - ih a 1 at) <D1d' / ~ <D; cD1 d'; 

t, 

r; = exp {-+ ~L dt} ~ cD; (t2) Cl>l (t2) d't I~ cD; (t) Cl>l (t) d't. 
t (24) 

Let us now substitute the "improved" functions 
fi<I>i and f2<I> 2 in the functional (8). We see imme­
diately that the function under the time integral 
from ti to t2 vanishes; only the first term remains, 
and we obtain 

t, 

a12 = St {~ <D; (t2) Cl>I(t2) exp [- ~ ~ L dt]d'}. (25) 
t. 

This variational principle has all the required 
properties. Indeed, it is easily seen that the mul­
tiplication of the functions <I>i and <1>2 by the arbi­
trary functions fi and f2, which are subject only 
to the conditions (19), does not alter the value of 
the functional. Moreover, it is apparent at once 
that the addition of a real function of time to the 
operator H changes a12 only by a phase factor. 

In contrast to the usual variational principle, 
the functional takes on its stationary value not 
only for the exact functions wi and w2, but also 
for any other functions which differ from the ex­
act functions by a time factor. In the solution of 
the problem by direct methods both variational 
principles lead, of course, to the same results if 
the time factor is regarded as one of the par am­
eters to be varied. If this condition is not satis­
fied, the variational principle (25) guarantees the 
stationary property of the functional for a wider 
class of functions and gives, in this sense, a more 
exact expression for ai2 than the functional (8). 
It must be borne in mind, however, that the func­
tional (8) does not have the extremal property, so 
that the agreement between the approximate and 
exact values of ai2 can only be accidental; in this 
case the extension of the class of functions to be 
varied leads sometimes (as we shall see later ) 
to a poorer approximate value for a12 • 

The remarks made in connection with the vari­
ational principle (8) at the end of Sec. 2 also apply 
to the new variational principle. Thus, for exam­
ple, we obtain the exact value of a12 if we substi­
tute <1>2 = w2 and an arbitrary <I>i in the functional 
(25). Dividing the interval ti ~ t ~ t2 into the two 
intervals ti ~ t $ 0 and t 0 ~ t ~ t 2, we can easily 
rewrite the expression (25) in a symmetric form 
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with respect to tt and t2• For the transition prob­
ability we obtain 

I, 

W12 = St {[ ~ <D; (t0) <D1 (t0) d-e r exp l ~ Im ~ Ldt 
I, 

t, 

+ { lm ~ L' dt ]} , 
I, 

where the dependence on the intermediate time in­
stant must disappear from the final result. 

We note in conclusion that formula (25) leads 
immediately to an exponential law for the decay of 
a quasi-stationary state, if 4>t is replaced, as 
usual, by an approximate function which satisfies 
the equation 

(27) 

In this case the functions of the initial and final 
states coincide, which is especially convenient for 
the application of the variational principle. 

5. CHOICE OF TRIAL FUNCTIONS FOR CHARGE 
EXCHANGE TYPE PROBLEMS 

In the calculation of the charge exchange by per­
turbation theory it would be natural to substitute 
4>t = 1/Jt and 4> 2 = ¢2 in the functional (25), setting 
tt = - oo and t2 = + oo • The functions 1/Jt and ¢2 

become orthogonal for t - ± oo and in order to 
avoid ambiguities it is more convenient to use the 
equivalent formula (26), setting in it t 0 = 0, for 
example. 

In order to investigate the legitimacy of such a 
procedure, we return to the initial formulation of 
the variational principle (8). We do not impose 
any further restrictions on the functions 4>t and 
4>2 except the conditions (5) for t = tt and t = t 2• 

In particular, the normalization condition and the 
condition J 4>i4>t dT =canst, which hold only for 
the exact functions 'lit and '112, may not be satis­
fied. If we now turn to the "corrected" functions 
4>tft and 4>2f2 and use the explicit forms of ft and 
f2 [formulas (23) and (24)], we see that 

~ <D;f;<D1f 1 d-e = const 

and, hence, the normalizing functions ft and f2 
are determined by the variational principle in 
such a way as to make the overlap integral a con­
stant. This implies that, if 1/Jt and ¢2 are chosen 
as trial functions, the normalizing functions ft and 
f2 will increase exponentially with time and the 
functions 'lit and '112 will cease completely to be 
close to the exact 'lit and '112• Indeed, the corre-

sponding calculations for the charge exchange of 
protons with hydrogen atoms indicate that the in­
tegrals in the denominator of formula (26) diverge 
in this case and that, therefore, this choice of trial 
functions is unsatisfactory. 

We therefore require that the class of functions 
to be substituted in the functional is consistent with 
the condition that the overlap integral J 4>{4>t dT 
be constant without any appreciable distortion of 
the wave functions. The simplest choice that can 
be made in this case is the superposition of the 
functions 1/Jt and ¢2 : 

<D1 = f~ch + ficJ>z, <D2 = gcp1 + gcpz; (28) 

lf~(-oo)l=l, fi(-oo)=O, 

g(oo)=O, lf~(oo)/=1; (29) 
W12 =I fi (oo) /2• (30) 

In this case the normalizing factor is one of the 
parameters to be varied, and we can require that 
the functional (8) or even the functional (4) be sta­
tionary in the derivation of the equations for the 
functions f, assuming that the variations are zero 
at the ends of the interval. We obtain the follow­
ing equations for ft and f2: 

ih ({1 + S(2) = Vufl + V12f2, 
(31) 

where 

(i, j =I, 2). (32) 

These equations were obtained directly from the 
Schrodinger equation by Bates. 2 Their derivation 
from a variational principle is more consistent 
and unique (see reference 3, Sec. 13). Solving 
these equations with the boundary conditions (29), 
we can determine the probability for charge ex­
change for different impact parameters. 

It was shown in the paper of Bates2 that this 
approximation is useful for fast collisions. How­
ever, the most important criterion for the applic­
ability of this method is provided by the value of 
the impact parameter p. For sufficiently large 
impact parameters (in practice, at distances of 
the order of two to three atomic radii) the wave 
functions are given with sufficient accuracy by 
(28), so that the approximation is adequate. Argu­
ments can also be given in favor of the assertion 
that the polarization has a small effect on the 
probability for charge exchange.' 

It follows immediately from the variational 
principle that all integrals 

~ <D; (H- ih ~) <Djd-c (33) 

vanish. From this we obtain at once the normali­
zation conditions and the condition that the over-


