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An investigation is carried out of the composition of bremsstrahlung appearing at the boundary 
of a medium with account of the Landau-Pomeranchuk-Migdal effect. 

As is well known, 1•2 multiple scattering leads to 
the suppression of bremsstrahlung of extremely 
relativistic electrons in a dense medium. Quanti
tative calculation of this effect was given by Mig
dal3•4 for an unbounded medium. In the present 
paper, the effect of the boundary of the medium on 
this phenomenon is investigated. 

1. Let a relativistic electron move with velocity 
v0 and enter normally on the surface of a semi
infinite medium at the time t = 0. The intensity of 
the radiation with frequency w in the direction n 
is given by the expression: 

A = [n X v] e"(kr-ool), 
-oo -co (1) 

r and v are the coordinate and velocity of the 
particle at the time t, k = nw/c is the wave vector 
of the photon. If we divide the linear portions of the 
path into integrals over t 1 and t2, then Enw is di
vided into three components: 

Enoo = E:u + £~"' + £:"'. 
0 0 

, e2w2 (' \ • e2 {nxv0]~ 
Enoo 47t2c3 } dtl } dt2A (I) A (2) = 47t2cs· (1- nvo I c)2 ' 

-00 -00 (2) 

refer to t < 0 and t > 0, respectively, and 
0 00 

E~"' = ;;~; ~e ~ dt1 ~ dt2A* ( 1) A (2) 
-00 0 

00 

= _ c2ro Im\ dt A(2)[nxv0 ] 

2 7tzcs ~ 2 1 - nv o I c 
0 

is the interference term. 

(3) 

(4) 

The term Eftw contains only the linear portions 
of the path, while the other two terms depend on 
the motion of the particle in the medium, and must 
be averaged over all possible trajectories. Fol-

lowing Migdal, 3 we consider a distribution function 
w ( t, r, v; v0 ) which satisfies the kinetic equation 

iJw aw r at+ v ar = nv J 0 (v, v') [w (v')- w (v)] dv' (5) 

(n is the number of atoms per unit volume, u is 
the elastic scattering cross section), with the 
initial condition 

w(O, r, v; vo) = o (r) o (v- v0). 

Averaging of (3) and (4) yields 
00 

(6) 

" _ e2ro ~ ~· • [nxv0] {nxv] Enw-- 2---z--a-Im drdvdtw(t,r,v,v0) 1 1 ·, (7) 
1t c - nv0 c 

0 

T oo 
'" e2w2 \ (' \ \ , 

Enoo = 2" 2& Re.) j drdvdtw (t, r, v; v0) j J d'tdpdv w 
0 0 

X ('t, p, v'; v) [nxv] [nxv']ei(kp-oo~>. (8) 

The latter expression leads to Migdal's result 
for radiation in a homogeneous medium after a 
time T; it may seem necessary to use the sum of 
the remaining terms E' and E" in the calculation 
of the boundary effect. One can verify that this is 
not so, however, by considering the limiting case 
of a low-density medium, n- 0. The radiation at 
the boundary should vanish, while E' + E" ap
proaches a finite limit. This paradox is resolved 
if we note that the formally infinite (for T- 00 ) 

quantity E"' contains a finite part which pertains 
to radiation at the boundary. In order to separate 
it, we make use of the following procedure: we in
troduce damping, assuming that the radiating 
charge falls off for t > 0: e = e0 exp (- ot ). Then 
E"' can be represented for small o in the form 
E"' = Ao- 1 + B. The first term gives the radiation 
in the unbounded medium; the second component 
represents the desired contribution to the radia
tion due to the boundary:· 
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00 

D.£'"= B = -; ~c" lim Re \ oe-281dt drdvw (t, r, v; v0) 
2 2 • ~ 

1t &~o ~ 
0 

co 

X~ 'tdc~·dpdv'w(1:, p, v'; v)[nxv][nxv']e'Ckp-ro~>. (9} 
0 

2. In the kinetic Eq. (5) we change to the small 
angle approximation, 3 setting 

v = vn ( 1 - 62 I 2) + v6 

For the function 

(n6 = 0). (10) 

u (t, 6; 60) = v~ ~ w (t, r, v; v0) ei(ltr-rot>dr (11} 

we get from (5) the equation 

aua~&) + ~"' ("-2 + 62) u (6) = nv ~a (6- 6') [u (6')- u (6)] d6' 

[ for brevity, we write u ( 0} for u ( t, 0; 00 }; 

A. = mc2 /E ] with the initial condition 

u (0, 6; 60) = o (6- 60). (13) 

We proceed in (12) to the Fokker-Planck ap
proximation* 

(14) 

We seek the solution of this equation in the form 

u = exp r~ (t) 62 + ~ (t) 66o + 1 (t)]. (15) 

The system of equations obtained for a, {3, y 

has the following solution, which satisfies the 
initial condition (13): 

(16) 

~ = Yiwj2qcothY2iwq t, ~ = Yiwj2qsinh-1 Y2iwq t, 

1 =- iw"-2t I 2 -In sinh V 2iwqt + 6~Yiw j 8q coth Y2iwq t 

(17} 

If we substitute this solution of the kinetic equation 
in Eqs. (7) and (8), we get 

00 

" e•Cil2 1 \' Enro = - - 2- ---, Im ~ d1: f (1:, 60), 
"'c /,2 + 9~ 0 

(18) 

"' e2Cil2 \' r 
Enro = z,•c ~ dtdpdvw (t' p, v; Vo) Re ) d'tf (1:, 6), (19) 

0 

where the following notation has been introduced: 

*An investigation of the integral equation (12) was carried 
out earlier by the authors• and confirmed the results obtained 
by the method of Fokker-Planck with the expression under the 
logarithm sign as corrected by Migdal! 

~d6'(66')u(1:, 6'; 6)==.f('t, 6) 

2i . " I d ( 62 y iw nh v-2. ') =-e-zron~2-exp- --ta tWq't. 
Cil ~ ~ . 

3. Equation (19), integrated over n, gives 
Migdal's result: 

E., = ~ E;rodn = ~ dt 3~:~. ct> (s}, 
00 

ct>(s) = !2s2 ~~othx-+)e-2sx sin2sxdx, 
0 

(20) 

(21) 

The radiation connected with the boundary is 
the sum of three terms which, after transforma-
tion to dimensionless variables 

6~1"-2 = z, a = 2 ( I -+- i)s 

have the following form: 

(22} 

00 

"2e2 1 \' d 
Enro = ,•cA.• 1 + iRe) dxe-ox dx e-oz tanhx, (23} 

0 

00 

D.E = - -~ Re dxaxe-ox -e-oz tanhx. • ~ ~ d 
nro "'"cA.• dx (24) 

0 

If we integrate these expressions over the angles 
of the photons ( d00 - 1IA. 2dz ), we obtain (after 
some simple transformations} the following for 
the radiation due to the boundary: 

00 00 

E = - Re 2 --- ae-ox-oz tanhxdx e2 {~dz~ 
1tC 1 + Z 

0 0 

00 

+ ~ ( cothx- ±)(l-ax)e-"xdx-2}. 
0 

In the limiting case of small s, 

E =~In _i_ 
1tC S ' 

(25} 

(26} 

i.e., the radiation differs from the radiation in
volved in stopping Est= (e2 /7rc) In (E/mc2 ) 

only in the factor under the logarithm. If the 
energy of the electron E > E0 (for lead, E0 ~ 3 
x 1012 ev ), then s > 1 in all frequency regions and 
the approximating formula (26} is thus valid. The 
total energy loss at the boundary in this case in
creases linearly with the energy and exceeds the 
so-called transition radiation (see references 6 
and 7) by six orders of magnitude. In the case 
E < E0, Eq. (26) is valid in the region of not too 
hard quanta tiw < E2 / E0• For the calculation of 
the energy lost by the particle at the boundary, 
quantum considerations are necessary. 

I take this opportunity to express my gratitude 
to A. B. Migdal and G. M. Garibyan for discussion 
of the results. 
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