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The temperature dependence of linear (anisotropic) and volume (isotropic ) magnetostric­
tion in the low-temperature region is studied on the basis of the phenomenological method 
of the theory of spin waves. 

1. In a recent work of the authors, 1 the tempera­
ture dependence of the ferromagnetic anisotropy 
constants was studied on the basis of the phenom­
enological theory of spin waves. The results ob­
tained in that work can also be used for discussion 
of the problem of the temperature dependence of 
the constants of anisotropic magnetostriction; this 
will be done in the present article. In addition, the 
temperature dependence of the volume (isotropic) 
magnetostriction will also be considered here. 

The magnetoelastic energy density of a ferro­
magnetic can be expressed in the general case, 
through terms linear in the components of the 
elastic stress tensor azs• in the form 

Here mt(r) = Mt(r)/M0 are the components of 
the unit vector of the local magnetization; M0 is 
the absolute saturation; i, j, l, s, t = x, y, z; 
n1, n2, n3 are integers such that n1 + n2 + n3 = 2N 
is an even number; in (1), and generally in what 
follows, summation over twice occurring indices 
is understood. 

The first term in (1) gives the anisotropic part 
of the magnetoelastic energy, expressed in the 
form of a series of ascending powers of the com­
ponents of the magnetization. The second term 
represents the change of exchange energy pro­
duced by the stresses, so that 

(2) 

where Aij are the exchange-interaction param­
eters. The specific form of the tensors A. and G 
is determined by the crystal symmetry. 

We now note that the components of the elastic 
stress tensor azs• in the problem under consider­
ation, may be treated as parameters related through 
the elastic moduli to the equilibrium deformations 
of the crystal lattice, without allowance for thermal 

vibrations of the latter. For harmonic elastic 
vibrations of the lattice do not change the equilib­
rium deformations of the crystal and consequently 
do not affect the mean magnetoelastic energy of 
the ferromagnetic; and allowance for the anharmon­
icity of these vibrations leads to a thermal expan­
sion, which in the first approximation combines 
additively with the temperature change of the mag­
netostrictive deformations. Thus the temperature 
dependence of the magnetostrictive deformations 
will be basically determined solely by the thermal 
oscillations of the magnetization, i.e., by the spin 
waves. Therefore our problem reduces to the cal­
culation of the energy spectrum of the spin waves 
with, as compared with the previous work, 1 addi­
tional allowance for the magnetoelastic energy (1). 

It is easy to see that addition to the Hamilto­
nian1 of the magnetoelastic part (1) leads to the 
following expression for the energy of a spin wave: 

Bk = ([L/Mo) {2 (A;t- G;jtsOzs) k;kj + MoH 

- { ~ [2N (2N + 1)- ~cx] [f N (0)- Ozs1pls; N (0)]}, (3) 
N 

where 

(4) 

is a homogeneous polynomial of degree 2N in the 
direction cosines ai of the equilibrium magnetiza­
tion.* At the same time it is necessary to add to 
the energy JC0 of the ground state a term of the 
form 

- ~ Ozs1fls; N (0). (5) 
N 

*For the remaining symbols, see our previous paper. 1 In 
the expression (3) for €k, as compared with the corresponding 
formula of the other paper, the magnetostatic energy has been 
dropped as nonessential, and saturation (IX H =H) has been 
assumed (see correction of a misprint, JETP 38, 667 (1960), 
this issue, Soviet Phys. JETP 11, 1326 (1960). 
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If we now calculate the thermodynamic potential 
g of the system according to the appropriate for­
mula from reference 1 with allowance for (3) and 
(5), we can then find from it the components of the 
magnetostrictive strain tensor: 

Uts = -a~~ = ~ {1-M (O) ~~oiT, H) [2N (2N + 1)- <11lJ} 

>< 'Pts; N (0) + 2 i: 2J Giilsktkj (e-•ki"T- I p, (6) 
0 k 

here M ( T, H) is the mean magnetization of the 
crystal in field H at temperature T, and M ( 0 ) 
= M0 is the magnetization at T = 0° K. The first 
sum in (6) represents the anisotropic magneto­
striction, which causes a dependence of the linear 
dimensions and shape of the ferromagnetic speci­
men on the direction of the magnetization. The 
second sum in (6) gives the isotropic magnetostric­
tion, which leads to an additional temperature de­
pendence of the volume of the ferromagnetic spe­
cimen as compared with a nonferromagnetic ( spon­
taneous volume magnetostriction or thermostric­
tion), and also to a dependence of the volume on 
the value of the magnetizing field in the paraproc­
ess region ( paraprocess magnetostriction). 

2. We consider first the anisotropic magneto­
striction. If for the polynomials qJ zs ;N we use 
harmonic polynomials, for which .C.((Jzs;N = 0, then 
after substitution of (4) in (6) we can express the 
anisotropic part of the magnetostrictive strains 
in the form 

where the coefficients A. have the meaning of mag­
netostrictive constants at temperature T; here, 
independently of the symmetry class of the crystal, 
any magnetostriction constant of order N = % ( nt 
+ n2 + n3 ) satisfies the general relation 

Pw (0)- )..N (T)]/AN (0) 

= N (2N + 1) !M (0)- M (T, H)]JM (0), (7) 

which exactly coincides in form with the corre­
sponding relation for the magnetocrystalline­
anisotropy constants.* 

As an example, we write the harmonic expan­
sion of the magnetoelastic energy through terms 
of fourth degree in the direction cosines C¥i of 

*As is known, magnetostrictive strains lead to a certain 
change of the magnetic anisotropy constants: to the purely 
crystallographic anistropy constants KN of order N there are 
added magnetostrictive corrections OKN = C.:\N,AN 2 , where 
the C's are definite linear combinations of the elastic moduli 
and where N, + N2 = N. 2 By virtue of the relation (7), the 
temperature dependence of the magnetostrictive part of the 
anisotropy constants is determined by the formula 

[oKN(O) -'OKN(T)]/'OKN (0) = PN [M (0)- M(T, H)]/M(O), 

the magnetization (i.e., through N = 2) for crys­
tals of cubic symmetry: 

Fme = __!_ ),..(!) [ axx (2or,2 - or,2 - or,2) + a (2or.2 _ or,2 _ or,2) 
2 1 X y Z yy y X Z 

+a (2or.2 _ or,2 _ or,2)] + 2)..(2) [a or, or, +a or, or, +a or, or, ] 
ZZ Z X y 1 XY X y XZ X Z yz y Z 

+ )..~1) (axx + ayy + a,,) [or.!+ or,~+ or,~ 

_ 3 (or.2or,2 + or,2or,2 + or,2or,2)] + )..(2) {a (or.4 _ 3 (cx2or,2 
X y X 2 y 2 2 XX ..t X y 

+ or.;or.;- or.!or.;)J + ayy [or.~- 3 (or.!or.! + or.!or.;- or.;or.~)] 

+ a22 [or.!- 3 (or.;or.; + ~!or.;- or.;or.!)l} 

+ 2)..13) {a or. or. [cx2 _ _!_ (or.2 + or,2)] 
2 XY X y Z 6 X y 

+ axzor,xor,z [or,! - T (or.; + or.;)] 

+a or, or, [or.2 - _!__ (or.2 + or,2)]} . yz y z x 6 y z (8) 

Here the lower index on A. corresponds to the order 
N of the constant, and the upper index enumerates 
the different constants of a single order. Since the 
generally used form of expression for F me for 
cubic crystals differs from (8) and is nonharmonic, 
the relation (7} need not be satisfied by the mag­
netostriction constants that enter into that expres­
sion. Instead of (7) there are obtained more com­
plicated formulas, in which "entanglement" of the 
magnetostriction constants of different orders oc­
curs. For example, for the first constants A.P• 2> 
we should have 

<1)..~1.2) (T)fAi1.2) (0) = Pi1.2) <1M (T' H)/ M (0), (9) 

where Pf 0 = 3 [1-2A.~2 >(o)/Af1>(o)] and Pf2> = 3 [ 1 
-A~3 >(o)/3A.f2 >(o)]; whereas for the harmonic form 
of expression (8), according to (7), when N = 1 
there is obtained the universal value of the coeffi­
cients Pf0 = Pf2> = 3. 

Experiment shows that the constants A2 often 
have the same orders of magnitude as the constants 
At· Therefore in the nonharmonic analysis of ex­
perimental data, it is hardly possible to obtain any 
general law for the temperature dependence of the 
"nonharmonic" constants At: from formula (9) it 
is evident that, depending on the relation between 
At ( 0 ) and A2 ( 0), different ferromagnetics may 
differ not only in the magnitude but even in the 
sign of the temperature rate of change of the con­
stants A1 ( T). The advantage of the harmonic form 

where flN = N(2N + 1) - 4N,N2 , whereas for the crystallo­
graphic constants KN the same formula holds but with 
PN = N(2N + 1). For example, for a cubic crystal, to the first 
crystallographic anisotropy constant K., for which P 2 = 10, 
there is added a magnetostrictive part 8K2 with P2 = 6. Since 
8KN increases with decreasing temperature more slowly than 
does KN, the relative contribution of the magnetostricti ve 
strains to the anisotropy is smaller, the lower the temperature. 
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of expression for the magnetoelastic energy con­
si.sts precisely in the fact that because it elimi­
nates this random factor, it permits exhibition of 
the true law for the temperature dependence of 
magnetistriction. 

It should be remarked that, just as for the aniso­
tropy constants, 3 the applicability of the relation 
(7) is apparently limited to a narrower range of 
low temperatures than the range of applicability 
of the "T3/2 law" for the temperature dependence 
of the spontaneous magnetization. Unfortunately, 
at the present time there exist almost no experi­
mental investigations of the temperature depend­
ence of the magnetostriction in the region of suf­
ficiently low temperatures. 

A theoretical calculation of the temperature 
dependence of the magnetostriction constants on 
the basis of spin-wave theory was first achieved 
by Gusev,4 who showed that in the low-temperature 
range, always, .:lA. ( T) "" T3/2; but he did not in­
vestigate the relation between the temperature de­
pendences of the magnetostriction and of the mag­
netization. A number of earlier works,5 based on 
the molecular-filed approximation, led to the fol­
lowing relation between the first constants of mag­
netostriction and of spontaneous magnetization: 

)..1 (T) I )..1 (0) = [M (T) I M (O)]p'' (10) 

where P 1 = 2. We remark that formula (7) for 
N = 1 in the low-temperature region, where it 
has its only applicability, can also be expressed 
approximately in the form (10), but with the dif­
ference that P 1 = 3. 

Among the early researches it is necessary to 
mention also the work of Vonsovskii, 6 who, within 
the framework of a special microscopic model, 
calculated the spin-orbit interaction of the elec­
trons responsible for ferromagnetism; this en­
abled him to give an explanation in principle of the 
nonmonotonic temperature dependence of the mag­
netostriction constants that is sometimes observed 
experimentally. In this theory, however, there en­
ter a number of undetermined parameters, so that 
comparison of it with experiment is difficult. In 
all the works enumerated, no attention was directed 
to the role of the form of expression for the mag­
netoelastic energy. 

The present theory, being based on the most 
general modern ideas about the nature of ferro­
magnetic and magnetoelastic phenomena, will pre­
sumably, after its detailed verification, make pos­
sible a number of definite conclusions regarding 
the limits of applicability of the existing spin-wave 
description of these phenomena. 

3. In conclusion, we give a few relations for the 
isotropic volume magnetostriction. From the sec­
ond sum in formula (6) the relative change of vol­
ume of the ferromagnetic can be found by calcu­
lating the value of w = oV /V 0 = J:. uu correspond­
ing to this sum. For temperatures KT » J.tH we 
have approximately 

w = w0 + HiJwjiJH, 

where 

(11) 

is the spontaneous magnetostriction (thermostric­
tion ), and 

is the coefficient of paraprocess magnetostriction. 
Here we have for simplicity taken Aij = Aoij and 
Gijll = Goij (cubic crystal); t and r are, re­
spectively, the Riemann zeta function and the 
gamma function. We remark furthermore that 
according to (2) the parameter G can be defined 
as G = BA/Bp, where p is hydrostatic pressure. 

By comparing expressions (11) and (12) with 
each other and also with the corresponding expres­
sions for the spin heat-capacity Cs and for the 
temperature change of spontaneous magnetization 
.:lM, * it is not difficult to establish the following 
simple relations among all these quantities: 

_!_ awo- - ~ ~ aw - _!_ aec C ~ 2 ~ _!_ aec ~M. (13) 
3 aT - 6 p. aH - ec ap s ~ p. Be ap 

Instead of the exchange-coupling parameter A, 
we have introduced here the Curie temperature 
®c, assuming a direct proportionality between 
them. 

The quantity Ya aw0/aT =.:laM represents an 
additional linear coefficient of thermal expansion, 
connected with thermostriction. As was to be ex­
pected in accordance with Griineisen's law,8 it is 
proportional to the spin part of the heat capacity. 
A quantitative estimate of .:laM can be made by 
using experimental data on the paraprocess mag­
netostriction. 9 For the majority of magnetic ma­
terials in the room-temperature range, aw/8H 
= 10-10 to 10-9 oe-1• Hence, according to (13), 
.:laM = 10-6 to 10-5• Experimental investigations 

*See, for example, the work of Kaganov and Tsukernik. 7 

In our notation, we have 
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of the volume magnetostriction at lower tempera­
tures are unfortunately lacking. 

The authors are deeply grateful to S. V. Von­
sovskii for valuable discussion and advice. 
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