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A study is made of the propagation of magnetohydrodynamic waves in an infinite rarefied 
plasma with an anisotropic distribution of charged particle velocities. The conditions are 
derived under which instability appears as a result of the anisotropy of the distribution func­
tion. It is shown that the kinetic treatment leads to an enlargement of the instability region 
compared with that obtained in the quasihydrodynamic approximation. 

1. It was shown by Rudakov and Sagdeev1 that the components of the velocity v parallel and perpen-
anisotropy of the pressure in a rarefied plasma dicular to H0). We shall assume no fluxes of 
can lead to instability. Their results were gener- charged particles along H0 in the equilibrium state, 
alized by Polovin and Tsintsadze2 to the case in so that foa = foa<vi, vf1 ). We shall also assume 
which the Alfven velocity is of the order of the that the functions foa fall off monotonically for in-
speed of light. The considerations given in the crease in v~1 • In references 4 and 5, the function 
works mentioned were based on the quasihydrody- f 0a was chosen in the form 
namic approximation of Chew, Goldberger, and noam~' ( m"v,j· mavi) 
Low.3 However, the quasihydrodynamical approxi- foa = (21t)'l•r.Lar'(J•" exp - 2T 11"- 2T.La ' 

(2) 

mation correctly describes only such plasma mo­
tions in which there is no transfer of pressure 
along the force lines of the magnetic field. In the 
present research, the low frequency vibrations of 
an infinite plasma are considered for the case of 
an anisotropic distribution of ion and electron ve­
locities; these considerations are made on the basis 
of the kinetic equation. Such an analysis for cer­
tain special cases was carried out previously by 
Vedenov and Sagdeev,4 and also by Chandrasekhar, 
Kaufman, and Watson. 5 

2. The kinetic equation for small deviations of 
the distribution function fa ( r, v, t ) of particles 
of type a from the equilibrium distribution has the 
form 
at at e at e at 
---.!! + v~+-.!:. E ~ + -"- [v:xH] ~ at iJ r ma a v mac ' i) v 

ea at + -[v:x'H0] ~ = 0. m,_c vV · 
(1) 

where E and H are the intensities of the electric 
and magnetic fields which are produced as a re­
sult of the departure of the plasma from the state 
of equilibrium; H0 is the intensity of the external 
magnetic field;. foa is the equilbrium distribution 
function, the index a = e or i for electrons and 
ions, respectively; me = m, and mi = M. 

The equilibrium distribution function evidently 
depends only on v 1 and Vlf (VII and v 1 are the 

where Tlfa and T1a are the "longitudinal" and 
"transverse" temperatures, and n0a is the num­
ber of particles of type a per unit volume. 

Solving Eq. (1) and the Maxwell equations by 
the Fourier-Laplace method, we can show that 
after a sufficient time the Fourier components of 
the quantities E and H will be proportional to 
exp (- iw't), where the complex frequency 
w' = w - iy is determined from the dispersion 
equation. If the dispersion equation has the solu­
tion with y < 0, then the equilibrium state is un­
stable. To obtain the dispersion equation, we sub­
stitute the values of fa, E and H in the form of 
plane waves in Eq. (1) and in the Maxwell equa­
tions. We consider perturbations corresponding 
to magnetohydrodynamic waves for which the fol­
lowing relations hold: 

(3) 

where k is the wave vector, WHa = eaH0/mac, 
and the bar over a quantity indicates averaging 
over the equilibrium distribution. We shall also 
assume that the Alfven velocity VA =Ho (41llloM)-l/2 

is small in comparison with the speed of light c (n0 

= n0e = fioi ). In the approximations of (3), the dis­
persion equation for electromagnetic waves in plas­
ma divides into two equations: 
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n2 cos2 8- s11 = 0, 

n2- 822- E~afEaa = 0, 

(4) 

(5) 

where Eij is the dielectric permittivity tensor, 
n = kc/ w', and e is the angle between k and H0• 

The quantities Eij have the form 

"" Q2 - --
En= ..w + [I + n2 cos2 8 (v~1 "fc2 - v5_"/2c2)], 

a. wHa. 
Q2 -

E22 - En= - ~ + n2 sin2 8 (v5_"/c2) 
a (J)Ha. 

where 

n; = 4rce2no/mr~.. k 11 = kcos 8, 
00 

n0<D" (v~1 ) = - rc (vi" J-1
---;- i v~ f 0<1. (v}_, v~1 ) dv l.., 
av II t 

00 

n0'Y" (v11) = - 2rc + i v~_f0" (v}_, v~1 ) dv 1_, 
av 11 ~ 

00 

n0F" (v11) = 4rc + i v l..f0"(v3_, v11) dv 1..· av 11 ~ 

(6) 

The integration over v 11 in (6) is carried out along 
the contour C, which runs along the real axis from 
- oo to + oo for 'Y < 0; if 'Y > 0, then the contour C 
bypasses the singularity VJJ = w' /k11 below for 
k11 > 0 and above for k11 < 0. 

We write out the asymptotic forms of the inte­
grals appearing in (6): 

~ k 11 v 11 <D" (v~1 ) dv = {- k11 vj_"f4w'2v3_", x" ~I, 
c kllvll-w' II Qr~.+ircw'lk111-1<Dr~.(O), x">l; 

i vV(1.(v11) dv ={-l-3k11V~Ir1.(w'r2, Xr~.~ I, 
~ 1- k 11 v 11 Jw' 11 . w'2ku2 (lfu~- ircw' 1 k 11 J-1F" (O)),x" > 1; 

~kllvii'Y"(v11) dvll={-k11v3_"f2w'2, Xr~.~l, 
c kll vu- w' "fjr~. + ircw' I kll ~-1 'Yo: (0), x"> I, 

where 
00 

k2 ~/ '2 x" = nv 11 " w , q" = ~ <D" (v11 ) dv 11 , 

co 00 

'Yjr~.= i 'Yr~.(v11)dvll, 2 
~ u" 

~ F"(v11)dv 11 . 
-00 -00 

3. Equation (4) determines the frequency of the 
ordinary magnetohydrodynamic wave, which is the 
analogue of the Alfven wave in magnetohydrody­
namics. From (4) we find, with the aid of (6), 

w'2 = k2V~ cos2 8 (I + (v}_, + tJ.Vle)f2V~- (v11 t + rwil e) jV~), 
(7) 

where p. = m/M. This result can be obtained in the 
quasihydrodynamic approximation also. Equation 
(7) was obtained for (} = 0 previously .1 •4 It follows 
from (7) that the plasma is unstable if 

-- 2 1--
V1l i + tJ.V1I e > VA + 2 (v3_ 1 + tJ.V}_.). (8) 

Equation (5) determines the frequencies of the 
extraordinary magnetohydrodynamic and "sound" 
waves, which are the analogues of the fast and 
slow magnetoacoustic waves in magnetohydrody­
namics. We note that the component €~3/ E33 in 
(5) appears as the result of consideration of the 
component of the electric field E parallel to H0• 

This component is essential in the consideration 
of waves with small phase velocities when lw' /k 11 1 

~ lv11il· 
The study of the dispersion equation (5) is ma-

terially simplified in a number of limiting cases. 
a) In the case of a strong magnetic field, when 

vi_ » ~ and vi_ » JJ.~. we get from (5) the fol­
lowing expressions for the frequency and damping 
coefficient of the extraordinary magnetohydrody­
namic wave: 
w = kVA, (9) 

r fw ~ + v A'" ''n' 6 I .w,",) k' 1-'<D. (VO./<"''') - u: 
00 2 

[ 71e + p 5 w'Y. (v11 Xk II vII- w)-1 dv II+ inw I k II :-lp. (V~/COS2!l)J l 
xlm -oo 

1- u;wl k 111-1 p SF ,(vii )(vII- wjk II )-1 dv c inwu!r k Jt1f ,(V~jcos2!lJ . 
-00 (9') 

For the anisotropic Maxwell distribution (2), Eq. 
(9') is simplified: 

'Y .. jrun sin2 !l V'fi[JM (. T 1..•) 2 
{ mV~ } 

w = Jl 8M 1 cos !l I VA ~ exp - 2T 11 e cos2 !l • 

The frequency of the "sound" wave in the case 
of a strong magnetic field ( vl_ » v~, p.v~) is de­
termined from the equation 

E33 (w') = 0. (10) 

If v~li ~ p.v~le' then the "sound" wave is strongly 
damped as the result of Cerenko~bsor:Q!.ion in the 
ionized gas: 'Y ~ w ~·ik 11v11d. If v~li « p.v~re• then 
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(11) 

The damping coefficient for 8 not too close to 1r/2 
is 

(11') 

In order of magnitude, y/w ~-!; « 1. The damping 
in this case is brought about by Cerenkov absorption 
in the electron gas. If the equilibrium distribution 
has the form (2), then we get for the frequency and 
the damping coefficient of the "sound" wave 

w=k11 VTue/M, 1 = lwl Vrrmj8M. 

The analysis just given shows that a plasma with 
an anisotropic distribution of electron and ion ve­
locities in a strong magnetic field is stable. 

b) For a strongly non-isothermal plasma, in 
which the electron~ar~eated more stroi_!Sly than 
the ions (J.tvfre »vfri• vii or J.tVle »v~li• vii). 
we get a solution of the dispersion equation (5) in 
the form 

w'2 = f k2 (a+ V a 2 - 4b), 

a= V2 ..L 11.cos28 (02/2- V2) + f:LSin 28 (I- q) V2 A 1 r J.e II e e _Le 

+ p.u; cos2 8 + p.U~"'J; sin2 0, 

b = 11.u2 cos2 8 (V2 + ':J. cos2 8 (V2j2 - V2) r e A 1 J.e 11 e 

+ p. sin2 8 (I - q.) v~.l· (12) 

In the derivation of Eq. (12), it was assumed that 
I ~ 1 2 k2-2 d I , 1 2 k2_2_ 
w » llvlli an w « vile· 

The condition for instability b < 0 becomes 
especially simply for an anisotropic Maxwellian 
distribution (2). The regions of instability in this 
case are shown as shaded areas in the drawing. 
The dashed line in the drawing corresponds to the 
boundary of the region of instability, according to 
Rudakov and Sagdeev .1 As is seen from the draw­
ing, kinetic consideration leads to an increase in 
the region of instability in comparison with the 
region of instability obtained in the quasihydrody­
namic approximation. 
!/ 
I ill Region of instability 

is shaded. The curves 
correspond to the equa­
tions 1: y "' x - 1, 
II: y = Hx+~). 
III: y = 3x+V9x2 +3x, 
where x "' T 11 e/MVj,, 
y = TJ.e/MVi.. 

If w'2 > 0 in (12), then the damping of magneto­
acoustic waves in an electron gas is determined 
by the expression 

r = + rrk sin2 8w2 J cos e r-1 {<D. (0) p.v~. (I - kll rw;/w2) 

- 2'¥ e (0) tJ.U!"'Je- "'J!F e (0) tJ.U! (I - k11 p.u;fw2fl} 

x {2w2 -- k2 [V~ + "· cos2 8 (_!_ v2 - 02) 
•-· 2 J.e II e 

+ p.sin2 8 (I- q.) v}.+ p.u; (cos2 e + "'J;sin2 8) lr· (13) 

In the case of an anisotropic Maxwellian distribu­
tion (2), Eq. (13) takes the form 

I= y rrmj8M sin2 e VT II elM I cos e r-1 (T J.e!T II .)2 

x [w2 (I - k~1 T 11 ,/Mw2f 1 - 2k~1 T 11 ,/M] {2w2 - k 2 [V~. 

+ T J.•/ M + sin2 ST J.e (I - T J.e/T 11 .)/ MJ} -1 • (131) 

For T1e = TIJe = Te, Eqs. (12) and (13) for the fre­
quency and the damping of the magnetoacoustic 
waves transform to the equations obtained in ref­
erence 6. 

c) We now consider the case in which the en­
ergy of thermal motion of the particles in a di­
rection parallel to H0 significantly exceeds the 
energy of thermal motion in the direction perpen­
dicular to H0, i.e., v~la »via· In this case, one 
can neglect the quantity €~3/ € 33 in (5) in compari­
son with E22 Z € 11 • As a result, we get the follow­
ing expression for the frequency of the extraordi­
nary magnetohydrodynamic wave 

w'2 = k2 [V~- cos2 8 (v11 1 + p.v11 ,)]. (14) 

This formula also follows from the expressions 
obtained in references 1 and 2. 

If w12 > 0 in (13), then we have for the damping 
coefficient 

I=- wV~ Im (s22 - s11 + s;3/B33)j2c2 • (14') 

Here E22 - € 11 , E23 and € 33 are__Q_etermined by 
Eqs. (6) for w' = w. If w2~_lcirv~li then, in order 
of magnitude, y/w ~ (v3J/vfri> « 1. 

d) Let the energy of the thermal motion of the 
particles in the direction perpendicular to H0 

significantly exceed the thermal energy of motion 
of thuarticles in the direction parallel 0_H0, 
. ~. 2 2 2 2 2 l.e.,.vli »viii• J.tvne or J.tvle~ »J.tvlfe• vrli· 

Assuming that /w1 12 » kf1vf1i and lw'l 2 « kf1vfre• 
we obtain the expression for the frequency of the 
"magnetoacoustic" waves: 

w' 2 = i-k2 (c+ Vc2 -4d), 

c = v~ +(I- +cos2 8) (v3_i + p.v~.) 
+ sin2 8 (p.U~"'J;- p.V3_eq,), 

d = - sin2 8 cos2 8 [t vi1 + p.u~.v~1 + p.v3_,1Lu;q,]. (15) 

It is evident that instability always takes place in 
the case under consideration. 
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::r ::r - ::r -
If now v le » vile and J.LVieqe » v li, vfli, which 

corresponds to a sufficiently large value of the 
energy of thermal motion of the electrons in the 
direction perpendicular to H0, then 

w'2 = k2 (V~ + !L sin2 8 (u;1J~- vl,q ,)J. (16) 

_Jp. the quas.!Qydrodynamic approximation for 
11v2 » :::::2 2 ::::2 h ,2 k2 2 · ,_ le J.l.VIIe' vli, viii' we ave w ,..... J.l.Vle' m 

....v11trast to (16), where w'2 ""'k2J.Lv}.eqe(<Ie » 1). If 
w'2 > 0 in (16), then we get for the coefficient of 
damping of this wave 

j = ;:lk:~~~ ~ ["1/;u;F, (0) + 21J;u~'Y, (0)- vl,<De (O)J. (17) 

We write out the expressions (16) and (17) in the 
case in which the equilibrium distribution has the 
form (2): 

u;' 2 = k2 (V~ - sin2 8Tle/T 11 ,M), (16') 
i = V rcmj8Mk sin2 8J cos 8J-1 Y T 11 ,j M (T j_e/T 11 ,)

2 • (17') 

e) Above we considered the magnetohydrody­
namic waves with high frequencies, in which 
lw'l 2 » k~lv~li. We now find the solution of Eq. (5) 
for frequencies satisfying the condition lw'l 
« lkllvrril· Making use of the expressions (6), we 
get for e not close to zero and rr/2. 

'Y = /k11 I AjrcB, 

A = {V~ + cos2 8 [_1_ (02~ + [LV2) - V2 - 11.&] 
2 j_t j_e lit II e 

+ sin2 8 (Vii (1 - q1) + fJ-Vle (1- q_)J} fLU~U~j(p.U~ + un 
+ ('IJ, -1J.J2 sin2 8, 

B = sin2 8 [ <D, (0) viyu;u7j(p.u; + u;> + 2 ('IJ, -1),) '¥, (O)J 

+ F; (0) {V~ + cos2 8 [ + (vi, + tJ-Vi,)- v~1 ,- [J-V~1 , J 
+ sin2 8 [vi, ( 1 - q) + fLVi, (1 - q,)J} . (18) 

For e = 0, the frequency w' is determined from 
the relation (7). 

It follows from (18) that even for weak aniso­
tropy, when A- 11al « 1, /1- qal « 1 and 
11 - 2vfla/v 1a I « 1, it is possible to produce in­
stabilities, if the intensity of the ~etic field 
is sufficiently small (Vi « v1_, J.LVie>· However, 
the intensity of the magnetic field in this case can-
not be so arbitrarily small because of conditions 
(3). 

Expression (18) is valid not only in the case of 
weak anisotropy. It can also be used when the 
angle e is close to eo determined from the condi­
tion A= 0: 

u11 ;+P.v,l e +ui;(l/2- q,J+p.ui,(l/2- q,}+("tJ,- "IJ,)2p.u2u~/(p.u~ + u~) 
(19) 

As e varies, y changes sign at the point e = e0• 

It was shown above that the plasma is unstable 
if the inequality (8) holds. Let the condition (8) 
not be observed. Then it follows from (18) and 
(19) that the equilibrium state is unstable if the 
inequality 

2 - -
VA+ Vii (1 - q) + [J-V}_, (1 - q.) 

(20) 

is satisfied. In the case of an anisotropic Max­
wellian distribution (2) for T 1e = T li = T 1 and 
Trre = T11i = Trr, the inequality (20) takes the form 

V~+4Tj_(1-Tj_jT 11 )/M<0 (20') 

The regions of instability for T 1e = T li = T 1 and 
Trre = T11i = Trr are shown in the drawing (here the 
quantity X = 2T n/MV}. is plotted along the abscissa 

and y = 2T1/MV~ along the ordinate). 

We note here that the condition analogous to 
(20') is written incorrectly in the work of Vedenov 
and Sagdeev4 (the coefficient 2 appears instead of 
the coefficient 4. ) 

The authors express their thanks to A. I. 
Akhiezer, V. F. Aleksin, R. V. Polovin, and V.I. 
Yashin for -valuable advice and discussions of the 
research. 
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