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The thermodynamic potential of a gas of electrons, positrons, and photons is determined by
the methods of field theory, taking account of the interaction between these particles with an

accuracy up to terms proportional to e In e2

. Divergences which appear in the high momen-

tum region of the virtual particles are removed by renormalizing the charge and mass of
the electron and redefinition of the vacuum level. General expressions including relativistic
effects are derived, and asymptotic formulas for the exchange and correlation energies are
obtained. Corrections to the black body radiation energy due to the interaction between the
photons and electron-positron pairs are obtained.

].. It is shown in a number of recent papers that
the methods of quantum field theory can be used
for the investigation of the thermodynamic prop-
erties of various systems of mutually interacting
particles. The idea of using these methods goes
back to Matsubara,! who proposed a thermodynamic
perturbation theory which is the analog of the per-
turbation theory of field theory. In the later work
of Abrikosov, Gor’kov, and Dzya.loshinskii2 and of
Fradkin®:* a considerable simplification was
achieved by going over to momentum space and
using Green’s function methods. It then became
possible to set up rules similar to the Feynman
rules in quantum electrodynamics for the solution
of problems in quantum statistics. Fradkin3:* ex-
tended the method of Matsubara to relativistic sys-
tems and undertook the renormalization of the
thermodynamic Green’s functions. However, the
divergences appearing in the calculation of the
thermodynamic potential are not discussed in this
work, and the thermodynamic potential including
the relativistic effects is not computed explicitly.*

In the present paper we determine the thermo-
dynamic potential of a system of electrons, posi-
trons, and photons with account of the interaction
between these particles with an accuracy up to
terms proportional to e* In e?, where e is the
charge of the electron.

We shall first consider the idealized problem
of the thermodynamic potential of a gas of elec-

*The thermodynamic potential of a nonrelativistic Boltz-
mann gas including only the Coulomb interaction between the
particles was found by Vedenov and Larkin®

trons and photons in the presence of a uniform
background of positive charge which compensates
for the electron charge and makes possible the ex-
istence of thermodynamic equilibrium states of the
system; later we shall investigate the role of the
ions which are present in real physical systems

in the region of moderately low temperatures, and
we shall also discuss the problem of the energy of
black body radiation with account of the interaction
between the photons and electron-positron pairs.

2. We give first the fundamental relations of the
thermodynamic perturbation theqry, which is based
on the methods of quantum field theory.2:3

If the system is characterized by the Hamilto-
nian f = ﬁo + H;, where ﬁo is the free field
Hamiltonian and ﬁl describes the interaction be-
tween the elementary excitations (the operators
are defined in the Schrodinger representation),
the equilibrium density matrix is given by the
expression

p(B) = exp {—B (1 —pN)},

where B is the inverse temperature, p is the
chemical potential, and N is the operator of the
number of particles. In the case of a system con-
sisting of electrons and photons, which we shall
consider later on, N is to be regarded as the dif-
ference of the number of electrons, ﬁ‘, and posi-
trons, N*.

The thermodynamic potential Q is connected
with p by the relation

Q=—p11InSpp ().
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Assuming

PB) =ro(B)S )

where po(B8) = exp {—B (Hy-uN)} is the density
matrix of the free system, we obtain for S(x,)
the equation

dsS (xq) [ dxy = — Hy (x4) S (xg),

where H;(x,) = pgl(x,) Hipo(x,). This operator
may be called the interaction Hamiltonian in the
“interaction representation.” In general, an op-
erator F in the “interaction representation” is
defined by

S(0)=1,

F (xa) = p72 (xa) Fpo (xa),

where F is the corresponding operator in the
Schriédinger representation. The solution of the
equation for S(x,) obviously has the form

S (%) = Texp{— g Hi (%) dx}

where T designates the chronological operator
acting on the variable x,.

In the case of a system of electrons and pho-
tons the interaction Hamiltonian has the form

Hi(x) = — { jo () A, (9 ax,

where jy,(x) is the operator of the electron-
positron current density, which is proportional to
the unrenormalized charge of the electron e; and
A,(x) is the electromagnetic field operator. It is
easily seen that

v T, (0) 4, (x) S (B

da v
) S B> ’

deo -

where <f> =Sp py(B)f and V is the volume of
the system.

Let us introduce the thermodynamic Green’s
functions for the electrons and photons:

G (x, x') =<T (Y () () SEN> /LS B,
G (x, x') =T {Aw (%) Ay () SR /LS @),
where ¢ and ¥ are the operators of the electron-

positron field. The thermodynamic Green’s func-
tion for the electron satisfies the equation*

('rvai,,v — T+ mo) G* (x, x')

—_ Sf(x, x") G (x", X')dx" =8 (x — X'),.

where the mass operator T is defined by the re-

lation

*Here and in the following we set i=c=1.
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KTH{A, () 1,9 9T () S BW
<S (B

Sf(x, *) G (x", x) dx" = ie,

It follows immediately from this formula that

aQ
deO

vV 3 n e ’ ,
= —ZSsz(x, x') G (¥, x) dx
or, in momentum space,

iQ v s
—%B(—zn)«;SPngl’E(ﬂ) G (p),

dey

where p = (P, py), pg=(2n+1)7/B +iu, and
the summation goes over all integer n.
In a similar fashion it can be shown that

1)

deo -

aQ v L
= — e D) &K () G5 (8):

where k = (k, k;), k, =2m/B; GY(k) is thermo-
dynamic Green’s function for the photon, which
satisfies Dyson’s equation

G*(k)=D(k)+ D (W) I (k)G"(k), D(k)=1/k* (2)

and T (k) is the polarization operator. In first
approximation the polarization operator is given
by the expression

o e — —

) () = 50 zgdp Sp 1S 1,S(e—k, )
where S(p) = (iyypy + my)~! is the thermody-
namic Green’s function for the electron in zeroth
approximation and m; is the unrenormalized
mass of the electron.

It follows from (2) that TIGY = k211 (1 —k~2M) 1.
This expression cannot be expanded in powers of
k~%[, since the integration over k in formula (1)
leads to an infrared divergence. The quantity IGY
in formula (1) must therefore, in first approxima-
tion in e}, be understood as representing the ex-
pression k~2[M?(1 -k~2[®)~1. The family of dia-
grams represented in the figure corresponds to a
formal expansion of this expression in powers of
e%. This family is generated from the first dia-
gram by inserting various numbers of simple elec-
tron loops. Together with the term proportional
to e% this infinite family of diagrams leads to a
quantity of higher order than e%, but smaller
than eg, on account of the infrared divergence.
The omitted higher order diagrams give a contri-
bution which does not exceed the order e}. Re-
placing TIGY by the quantity k~*I® (1 -k-211‘®)-1

@ QO
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we therefore account for terms proportional to e}
and terms of the form eff (ef), where f(0)= .
Integrating (1) over ey, we obtain

where Q, is the value of Q for ey =0, and the
quantity AQ is in this approximation given by

~ i 2] ‘2’<k>[<

__V e

ot ZS dk In det [aAv — 2 (k)] (5)
The superscript (2) in H;‘f&
now on. _

3. The polarization operator II)p(k) must sat-
isfy the condition of gauge invariance:

AQ =

will be omitted from

M (k) ky, = 0.

However, the quantity I—I;\V calculated according
to formula (3) does not satisfy this requirement.
To make the operator II), gauge invariant we in-
troduce the polarization operator Iy, (k, iky) of
quantum electrodynamics, which can be obtained
from Ty, (k, k,) by setting u =87 =0 and chang-
ing k4 to iky (k, is real).

Writing II),, in the form

ﬁlv (k, k4) = {ﬁkv (k’ k4) — I (k> k4)} + Hlv (k, k4),

we see easily that the first term {II),~1I),} does
not contain any divergences and satisfies the re-
quirement of gauge invariance; replacing the sec-
ond term Iy, (k, k;) by the gauge invariant ex-
pression

Iy (k, kg) — = Slle (k, i | Kk|),

we then obtain a gauge invariant expression for
I, .

As is known, the gauge invariant polarization
operator II,, (k) of quantum electrodynamics has
the form

H)w (k) = (khkv - S)wkz) C (k2) ()\, Yy = 1, 2, 3, 4),

where C (k%) = Cy+ CRr(k?) is a certain function

of k? which is related to IIy,: C (k%) =Yk

X IIW(k ); Cy is a logarithmically divergent con-
stant, and CR(kz) the regularized value of C (k2).
The gauge invarient expression for H;W therefore
has the form

My (k, kg) — 2 85T00s (k, i | k|) = (I (k, kg) — Ty (K, &y)}
+ (kaky — 81k%) C (), (6)
In the following Iy, (k, k,) will be understood to

stand for this gauge invariant expression.
The polarization operator IIj,(k) must be in-

- ﬁ(z) (k)>—1]vl
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variant under spatial rotations of the vector k.
) (k) can therefore be written in the form

1 = 1
—mw=®——

Lo B k) (o i=1,2,9),

k-k-) A(K?, k)

1 = = 1

-_ ?2— Hqi (k) = — k2 H,-4 (k) - - F k,‘k.;B (kz, k4),
{1 —

— 7 Haa (R) = B (K2 k),

where A and B are certain functions of k? and k,
related to IIy ,:

1 = 1 =
B=— kzndh A+k4B—‘—Wva+WH44

It is easy to see that
det (33 — 5 ) = (1 + ﬁ—:B)(l +A+§-B)2
= (1 _|_C__£[—“'I:_2H“)

m,—T,  Ti,— 2
X (14 € — g g Tull )

Formula (5) then takes the form

” ({; - 2’ S dk {ln I: M4 (k) — T4q () :'

AQ = T T CcHIE

ﬁvv (k) - va (k)
[+ C®) 2k

+21n[1_ s (k) — Tas (#) ]}

[ + C (k)] 2k

+ s )32§dk1n[1+0(1e)1 ()

4. The charge and the mass of the electron in
the expression for the thermodynamic potential
Q = Qy+ AQ must be renormalized. As is known,
the physical charge of the electron, e, is connected
with the “bare” electron charge, ey, by the relation
e? = e} (1 + Cy)~!, whereas the physical mass, m,
of the electron is related to “bare” electron mass,
my, by m = mj + ém, where ém is the electromag-
netic mass of the electron. For the renormalization
of the mass and charge of the electron in AQ in our
approximation it is clearly sufficient to neglect the
quantity C (k) in the first two terms of (7) in com-
parison with unity, and to make the expansion
3In[1+ C(k)] ~3C(k)=~-k?l,,(k) in the last
term, replacing everywhere e; by e and my, by m.
As a result we obtain the following expression for
Q:

Q = QO —I— AQS + AQC: (8)
|4 1 =
AQ, — _ngdl{F i, (£), 9)

ke
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39, s oo+ 242

A (B) — e2A; ()] €A (k)
+2In[14 S8 ZER 0] 20 (10)
where
2 1 = 2 { —
%A= — k_z(va—HW)’ 2—2A1=—W(H44-—H44).

The quantity AQg, which is proportional to e?,
is called the exchange part of the thermodynamic
potential, and the quantity AQg, which contains
the charge in higher powers than the second, is
called the correlation part of the thermodynamic
potential.

For the calculation of the quantities A(k) and
Ay(k) we use expression (3) for I—IM,(k) and the
relation

2, 2 1

T, 2
B pe St Py

=1l—ny —nf=1—n,,

no = [eﬁ (5p"l-") + 1]—1’ + — [eB (Ep"l'u) + 1]'—1,

pa=(2n+ 1) /B + ip. (11)
Then we obtain
k
Ay =—Re{ 8, 2ELR|
B2 d k — 2pg (ke —
Ay (R) = — ok R S_p_ np £ kzpi(z;)k = pi=it, (12)

After integration over the angles we find

fee]
2 2 p2 k“+2w2—‘—452k2
A(‘D»k4)=‘gz—§ de 1+ kln( p ‘l
G Ep (k? — 2pw)® + 452/2“‘
A (0, &)
k2 §O p*dp | 45% — k2 (k2 4 2pw)? + 4s;ki
= n
et ) ey d 8pw (k2 — 2pw)? + 4e2k?
N spk4 n_1 Spwspk., (13)
po 4Eiki — 4pw? 4 k4

(Here and in the following we use the notation w
= k|, kX=w?+kj, €= Vp2+m?.)

In the nonrelativistic approximation, when
|u-m| «<m, B! «m, the expressions for A
and A; become much simpler:

A0, k) = 5 Ay (0, k)

1 (0% — 2pk) / 2m
e S[(wz—zpk)/zmu K "o

(uo2 + 2pw)? + 4m2/’e2

— 2pw)? + 4m2k} ’ (14)

o
2,;20)3 S pdpnp In
0

where nj = [1+ exp 8 (p¥/2m - p’)]1™! and '
=u — m. The correlation part of the thermody-
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namic potential takes the form*

c=EE(—ZJa—%]gdk{ln[l—;—

.

2 2
AQ L\ (k)J — A (k)} . (15)
5. Let us now calculate the exchange part of the
thermodynamic potential, AQg. For this purpose

we write (9) in the form

AQ, = AQR + AQ™ + AQY, (16)
where AQ" is the value of AQg for p=p1=0
and
m _ 4ver ( dp dk p(p+ k)
20" = i\ e (o B e,
dk = dkdky, k, = ik; 17)

———V m
2B %Sdk IL, (k, kg) — AQO— AQ™. (18)

AQE = —

It will be shown below that only the first term of
(16) is finite, whereas the other two terms contain
divergences in the region of large momenta; we
shall therefore restrict the integration in these
terms to a finite relativistically invariant region
in the form of a four-dimensional sphere of radius
L.

The quantity AQ? coincides with the value of Q
for pu= B~'=0; this quantity represents a displace-
ment of the vacuum level due to the interaction of
the fields, and should be discarded.

We now show that the quantity AQ™ is connected
with the renormalization of the electron mass. To
this end we consider the expression for the thermo-
dynamic potential of an ideal gas of electrons, posi-
trons, and photons:

2V  (e.—
Qia= — g {|dpIn (1 e~ 7%

+ln(l 4 e @ B)]—gdkln(l P )}. (19)
Here the first and second terms define the thermo-
dynamic potentials of the electron and positron
gases, and the third term gives the thermodynamic
potential of the photon gas (the chemical potentials
of the electrons and positrons are equal in magni-
tude but of opposite sign, since there is equilibrium
between the formation and annihilation of the elec-
tron-positron pairs6 ).

The above-mentioned quantity 2, can evidently
be obtained from Qjg by replacing in the latter the
mass of the real electron m by the mass of the
“pare” electron my=m — ém. Therefore

Qjq=Qo 4 m g%:li

(20)

2Vmdm { d
=Q,+ S_p )

(2m)®

*This formula for A{). was obtained by Fradkin.®
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Let us now compute the quantity AQ™. Per-
forming the integration in (17) and recalling that
in the approximation under consideration the elec-
tromagnetic mass of the electron is given by the
expression7

3me? L2 1
om = i (I 7+ )

AQ™ can be easily brought into the form

AQ™ — 3Ve2m2( L2 -+ 1 )S dp ) = 2Vmdm S dp

2 (2n) m 2 ) ) e, @mP Y, P
Comparing this expression for AQ™ with the ex-
pression (20) for the thermodynamic potential of
the ideal gas, we see that

Qy+ AQm = Q.. (21)

To calculate AQ§ we make use of the gauge
invariant expression (6) for 1),. Noting that
I, (k, iw)

\ dpqxdp

—ico

&
(2m)t

2m? +p(p—k)
(m® 4 p?) [m? + (p — R)?] |k =iw’

and using formula (17) for AQ™®, we write AQ?
in the form

4Vet 2m? 4 p(p— k)

R _
AL = (T p7) [m¥ -+ (p— 7]

k.=iw]

2 1 1 q
— e e {5 D [ X

1 ¢ 2m*+p(p—k)
-{..-Z—T:— S d 4(m2

N + p?) [m? + (p— k)]
T b potp)
+ ZE? S k2 k2 — 2pk ,,.=[-=,,} — AQ°,

—ioo

Performing the summation over p, and k, with
the help of relation (11) and the formula

ot _ 1
B kz w? - k2 =N+

4

= (ePo — 1yt (s = 2"_”) (22)

we obtain after some simple transformations

2Ve?

R
A8 ==y

(dpdkU, (p. W) n,Ns
w,) %dpdq {U_(p, @) [nyn; +nyn; ]

+ U, (b, Q) ln-n—+ nin} 1y, (23)

where the functions U, (p,
defined by

q) and Uy(p, k) are

‘ 27 m?—pqte,e
Uz, 9 =77 [ T 0T P — R —I}’

Uo (P, k) = _ﬁf_.

Ep(l)

(24)
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The superscript R in Aﬂg will be omitted in the
following.

In the nonrelativistic case (|u-m| «m, B-1
« m) the quantity U,(p, q) goes over into the
Fourier transform of the Coulomb potential:
U,(p, q) = 47/(p + q)? and the quantities U_(p, q)
and Uy(p, k) vanish. In the nonrelativistic case
the exchange part of the thermodynamic potential
is therefore given by the formula

apay

— Ve (_apayq_
A = — oy S(p+q)2 "eltg:

(25)
In the extreme relativistic limit (4 > m or

B~ !> m) we have U,(p, q) = —27/pq, Uy(p, k)

= —2m/pw and the quantity AQg takes the form

AQ, = 5 Ve? {(On/d)? - (4/3B%) On/ou}, (26)
where
n=2 (21:)‘BS (n; — nj) dp. 27)

8. Using (8), (16), and (21), we finally write the
thermodynamic potential of a gas of electrons,
positrons, and photons in the form

Q=Q4+AQ, AQ=AQ+ AQ,, (28)

where i4, AQg, and AQ; are given by formu-
las (19), (23), and (10). Eliminating the chemical
potential p from the expression for AQ by ex-
pressing it through the number of particles n with
the help of (27), we obtain the correction to the en-
ergy of the system under consideration:

AE = AE, -+ AE..

The exchange energy AEg contains the correc-
tion to the energy of the ideal gas Ejq which is
proportional to the square of the charge; it con-
sists of a sum of momentum integrals of products
of the equilibrium numbers of the particles and
certain functions of their momenta which play the
role of “potential energies” for the interaction in
momentum space. The “potentials” Uy(p, k) and
U_(p, k) are always negative; the “potential”
U,(p, q) can have either sign. Taking this into
account, it can be shown that for small values of
the average momentum of the particles, AEg < 0.
For a certain value of the average momentum,
which is of the order of magnitude of the mass of
the electron, AEg goes to zero; for larger values
of the average momentum of the particles, AEg
> 0.

The correlation energy AE; contains correc-
tions of higher than second order in the charge;
it will be shown below that this quantity is pro-
portional to e® for finite temperatures, and to
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e In e? for zero temperature. It is easily seen
that AE; is always negative.

7. At low temperatures (8! « u — m) the
correlation part of the thermodynamic potential
has, according to (10), the form

AQ, = % §°dk4 S wldw {ll’l [1 4 e Al(k) ]

(29)

2k

42 [1 4 A —ehy (k)]

_eA (k)}

[
As was emphasized in Sec. 2, the region of small
w and k; plays the main role in this integral due
to the smallness of e?. Introducing, in the place
of w and k,, the new variables k and ¢ accord-
ing to the formulas w =k sing and k,=k cos ¢
and assuming, wherever possible, that k is zero,
we rewrite formula (29) in the following form

§dq> sin? g #dk {In[1 “2L 9]

0

+om[1+ 2O A 0o | AL I (o

8Qc = (21:)

where A and A, are, according to (13), given by
the formulas

1 22— m2
AQ, o = {t V="
— tan <p1:an"(z”ﬁ—p_—'12 tan'cp)},
1 {p Vi —m?

n?sin? m?

u -1("9
m

Ay (0’ cP) =

— & cot etan

“tang)}.

Integrating over k in formula (29’) and neglecting

terms of order e*, we obtain AQ; for 87! < u-m
in the following form
AQ __ Vetm*Ine® (21A; (0, Q)2

el

4+ A0, ¢) — AL (0, 9)1? )} sin®pde. (30)

The quantities A(0, ¢ ) and A4(0, ¢ ) take the fol-
lowing form in the nonrelativistic (u—-m = u’ < m)
and extreme relativistic (u > m) cases:

A, @) =470, ¢) =n2{} 2"/ m
— cot ¢ tan”! (V2" /mtane),

A (0, ¢) = p*/n2m?,

A (0, 9) v m.

Substituting these expressions in (30) and using
(27), we obtain the following formulas for the cor-
relation energy in the nonrelativistic and extreme

p<m;

=p2(l —¢cot ¢)/n’m?sin®e,

1321
relativistic cases at low temperatures:

AE.; = (2r)™ (1 — In 2) Vmne* In (eémn—"h),

p—l < n’/a/m < m, (31)
AE; =+ (27)®(3n2)*:Vn'setIne?,
n'/a> ﬂ-l, n's > m. (32)

Formula (31) was obtained by Gell-Mann and
Brueckner.?

The integration over the momenta p and q in
the expressmn (23) for AQg is easily carried out
for g7l « p—-m:

Ve? 3 272
~ g B pyE e 2V

S

The exchange energy in the nonrelativistic and
extreme relativistic cases at low temperatures has,
according to (27) and (33), the form

AE; = — (2r) 4 (3n2)% Vn'he?, Brgmh/im<m;  (34)
AE;=-2(2r) 4 (3n2)hVn'he?, %P7,  nhSSm. (35)

8. Let us now turn to the consideration of the
role of the ions. For this purpose we must assume
that the temperature is sufficiently high to allow us
to neglect the possibility of the formation of bound
electron-ion pairs.

The thermodynamic potential of a system of
electrons, photons, and ions is given by the general
formula (1), in which Iy, (k) must be understood
to represent the total polarization operator; this
operator corresponds to the set of diagrams con-
taining closed electron and ion loops. In first ap-
prox1mat10n in the charge IIA H)\ + H?\V’ where
I'IM 1s_ given by formula (3) and HM, is obtained
from H)w by replacing the chemical potential u
and the mass of the electrons m by the chemical
potential u; and the mass of the ions M (here and
in the following the index e refers to the electrons
and the index i to the ions). The chemical poten-
tials of the electrons and ions are connected through
the neutrality condition for the gas:

P = e ) (% —

AQ,

33)

nt =n’, +) dp’

nt = ni dp. (36)

2
(2=)® S
For definiteness we assume that the ions have spin
Y, and charge —e (protons). The ions can be con-
sidered nonrelativistic in view of their large mass.

The thermodynamic potential of the system of
electrons, photons, and ions is given by the formula

Q = Q;q+ AQS + AQ; + AQ,, (37)
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where Qjq is the thermodynamic potential of an
ideal gas of electrons, photons, and ions; .Aﬂg is
given by formula (23), and the quantity AQY is ob-
tained from AQ§ by replacing u, m by uy, M. The
correlation part of the thermodynamic potential
AQg is given by formula (10), where A = A€+ Al
and Ay = A{ + A}; the quantities A® and Af are
given by (12) and (13), and A! and A{ are obtained
from A® and AY by replacing u, m by py, M

9. The thermodynamic potential @ can be easily
determined for temperatures higher than or of the
order of the temperature of degeneracy of the elec-
trons (8™!R |p-m]|). Here the largest term in
the sum over k, in formula (10) for AQ¢ is the
term with kg = 0; the remaining terms give a
contribution to AQ; which does not exceed e, and
can be neglected. As a result we obtain

AQ: =g (;ﬂzg odofin[1 4 £he 0]

, 2 A (0, 0) —e?A; (0,0 2 A (w, O
—,—21n[1—,—e © 0 h )]_e (@ >}. (38)
Since e? is small, the small values of w play the

most important role in this integral; therefore,
assuming, wherever possible, that w is zero, we
rewrite (38) in the form

§Ow2dm{]n(l + 2800y 28C.01 81

,
AQ: =gy
0

Here we made use of the equality of the quantities
A(0, 0) and A(0, 0), which, according to (13),
are given by the formula

A (0, 0) = A, (0, 0) = A°(0, 0) 4+ A(0, 0)
1 ¢ pd 2\ M( .,
__ngp : p2>—|-;2—gn;dp.

0 0

With the help of (36) it can be easily shown that
A®(0, 0) = on®/8u and A!(0, 0) = 6nl/6uy. Inte-
grating over w in formula (38’), we obtain the
following expression for the correlation part of
the thermodynamic potential* for 8712 |u-m|:

AQ, = — (Ve3 [ 12nB) (On® | Oy + On! [ Opwy). (39)

It can be easily shown with the help of the neu-
trality condition for the gas that in the considered
region of temperatures AQL is in order of magni-
tude M/m times smaller than AQ§; the contribu-
tion of the ions to the exchange energy at B!

R |u-m]| is therefore negligibly small.

We note that the correction to the pressure due

to the interaction between the particles, Ap

*The analogous expression for the correlation part of the
thermodynamic potential in the nonrelativistic case with
m>> B~ > |p — m| was obtained by Vedenov.’
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= —AQ/V, is positive for |p-m| < B‘ << m and
negative in the region 87! 2 [p—-m|, B! » m.

10. From formulas (23) and (39) we can obtain
the correction to the energy of the system of elec-
trons, positrons, and photons for u =0, i.e., to
the energy of black radiation:

(e
2Ve3ms3 x2—1/y dx 2
AE, = — 3nf 2 Yy pBmx ] ’
; x2—1)"2 ¢ +1

I dx
ePmr 4 q

(Vx2—1Vy —1

AEs_Ve?m‘l{ w

2wt 3(Bm)2§v #—1
+S eBm S

— (Ve —1
FVE= /(Y R=T—VE=1n)}

The formulas (40) become much simpler for
B! > m; recalling that for 8! > m the energy
of an ideal gas of electrons, positrons, and photons
is equal to Ejq = 3372V/1808%, we find the follow-
ing expression for the corrections to the energy of
black body radiation:

5Ve? Ves
A = % — % 3‘{34

Bmy+1

40)

25

=mEid <€ — (41)
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