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The dispersion relation technique is used to study the electron propagation function G (p) 

and the current matrix element < 0 I TJ ( 0) I p', k> as functions of p2 = (p' + k )2• It is 
shown that in the two-particle approximation (no more than two particles in the interme
diate state) the analytical properties of the matrix element under study (with respect to 
the variable p2 ) lead to a Hilbert boundary problem, which is then solved. Explicit expres
sions for the electron spectral propagation functions are derived in the given approximation, 
and the asymptotic behavior of G ( p) and r Jl ( p, p'; k) is determined for - p2 - oo , p' 2 

= - m 2 and k2 = 0. 

1. INTRODUCTION 

AT the present time it is possible to develop a 
new approach to the study of the problems of quan
tum field theory. This method is connected with 
the use of the dispersion relations for different 
Green's functions (or matrix elements) of the in
teracting fields. In such an approach, an infinite 
set of interlocking integral equations is generated; 
these connect all possible matrix elements on the 
energy surface, and definite boundary conditions 
are necessary for the solution of this set. 

In quantum electrodynamics, and especially in 
quantum field theory, the dispersion technique has 
already furnished a number of interesting results; 
in these cases, correspondence with perturbation 
theory is chosen as a reasonable boundary condi
tion. Thus, for example, in the work of Fainberg, 1 

the behavior of the photon propagation function 
DJJ.v ( k) and the matrix element of the current 
< 0 I jll ( 0) I p, p' > were studied as functions of the 
square of the photon momentum k2 = (p + p')2 for 
p2 = p' 2 = -m2• In addition, a number of other 
problems was also considered. In this connection, 
the study of similar quantities as functions of the 
square of the electron momentum p2 is of inter
est. This is the object of the present research.* 

By definition, 

Ga.il (x- y) = (0 I Tc)ia. (x) tpil (y) i 0) = (Z~)• ~ Ga./3 (p) iP(x-u> dp, 
(1.1) 

*A similar investigation into the application to mesody
namics has been made in the research of Malakhov, Rashev• 
skaya, and Fa~nberg. 2 

where lf! (x) is the renormalized Heisenberg op
erator which satisfies the equation 

(Vx + m)cji (x) = 'Yj(X), Vx = a~-<ofox~'-, 
(1.2) 

It is known that the Fourier transform of the 
electron propagation function has the spectral 
representation 

2 _ (21t)s {( p2 _ m2) 
P1 (p ) - 4 (p2 + m2)2 Sp 2m+ -;p 

X 2] (0 I 'Jj (0) In) <n I~ (0) I 0) o (p- Pn)}, 
n 

( 2)- (27t)s S {( 2 2 + 2mp2) 
P2 P - 4 (p2 + m2)2 P m - P /p 

X ~ (0 I 'Yj (0) In) (n 11i (0) I 0) o (p- Pn)}. (1.4) 
n 

Thus the spectral functions p1 and p2 are ex
pressed bilinearly by the current matrix elements 
< 0 I TJ ( 0) In>. In the present research, the be
havior of the first non-vanishing matrix element* 
< 0 I TJ ( 0) I p', r; k, A.> is studied by the disper
sion relation technique as a function of p2 = (p' + k)2• 

2. ANALYTICAL PROPERTIES OF THE FORM 
FACTOR 

We consider the electron form factor 

*For brevity, we call the matrix element i<OI7J(O) I p', k> the 
form factor of the electron. 
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where p + p' + k = 0; e~ = e~- kJ.Lk- 2(eAk)(l-.fdj) for x0 < 0, x2 > 0, and is therefore regular in the 
are the four photon polarization vectors in arbitrary upper half plane of p2• 

scale; u_ ( p') satisfies the equation ( ip' + m) u_ ( p') In addition, 
= 0. 

It is easy to prove that for p'2 = - m 2 and k2 = O, e~ (2w)-'1• (P~n (p)- P~ut (p) I u_ (p') 

(2.2) 

The requirements of relativistic and gauge in
variance lead to a general expression for the form 
factor: 

P~n (p) = (II'-- ~:) P1 (p2) + icriJ.vkv Pz (p2) 

A p' k 
+ ik~'- P3 (p2) + k~'-kP4 (p2) + e ;k , (2.3) 

where aJ.Lv = Y2 (YJ.L'Yv - Yv'YJ.L ). In accord with 
(2.2), * 

(2.4) 

We now investigate the analytical properties of 
< 0 I TJ ( 0) I p', k> in the variable p2• Making use 
of the reducing formula of reference 4, we trans
form to the relation 

e~ (2w)-'1• p~n (p) u_ (p') = ~ dxe-iPIC f~n (x, k) u_ (p'), (2.5) 

where 

~~n (x, k) =- e-ikx {0 (- Xo) 

X(O II'Yl (0), f(x)]+ I k, /.)} (- Vx + m) = 0 

for Xo > 0, x2 > 0. 
By virtue of the fact that k2 = 0 in the system 

of coordinates p' = 0, we have I pI= -Po -m. 
Therefore, for Po- Po + ir, the factor 
exp { r I x0 + e • x I } appears under the integral in 
(2.5), thus guaranteeing the regularity of the de
sired function in the lower half plane of the com
plex variable Po or, what is the same thing, the 
regularity of p2• ( The indeterminacy at the cone 
x2 = 0 is removed as usual by the addition of the 
factor exp {- Ex2 } E- + 0). 

Similar to the above, the quantity 

e; (2w)-'1• P~ut (p) u_ (p') = i (0 I 'Yj (0) I p', r; k, /.; out) 

-1. -'I• {( P~ k ) * 2 · k p* ( 2) =e~'-(2w) 1~'--{ik Pdp)+t:;""v v 2 P 

+ ik~'-P; (p2) + kj?P: (p2) + e :~: } u_ (p') (2.6) 

can be put in the form 

e~ (2w)-'1• p~ut (p) u_ (p') = ~ dxe-iPX nut (x, k) u_ (p'), 

f~ut (x, k) = e-ikx {0 (Xo) 

(2. 5') 

*Here we have used the relation:• 

G-' ( -p) ~ G-' (p') "' -kJ.Lr J.L(-p, p'; k). 

= - (2rr)4 ~ (0 I 'Yj (0) I n)(n I :;j (0) I k, /.) o (p + Pn) = 0 
n (2. 7) 

for p2 > -m2• 

Consequently, there exists a single analytical 
function e~(2w )-112 FJ.L(z) u_(p') which is regular 
through the complex z plane, with the exception 
of the cut along the real axis from the point - m 2 

to - oo, so that 

lim e~ (2w)-'1• P"" (z) u_ (p') = e;(2w)-'1• p~n (p) u_ (p'),. 
Z-+pz_:'t 

lim e~ (2w)-'1• P 14 (z) u_ (p') = e~ (2w)-'1• p~ut (p) u_ (p'). 
z--o.p'+i• (2.8) 

3. THE HILBERT PROBLEM FOR THE FORM 
FACTOR 

We have thus established the analytical proper
ties of the form factor as a function of p2• For 
the determination of this function, however, it is 
necessary to have some sort of condition on the 
line of the cut. Such a condition is usually ob
tained in the expansion of e~(2w)-1/2 [F~n(p) 
- F8ut(p)] u_(p') over the complete set of states 
In>, if we break off the resultant infinite series 
at some term. We note that for such a cut off it 
is necessary to sum over the intermediate states 
of In> in the following fashion in order to pre
serve the Hermitian character of i [ Fk(p2 ) 

- Fk(P2 )]: 

~In) <n! = -j-~ {In, in) (n, in I + In, out) (n, out I}. 
n n 

Taking into account the vanishing of the current 
matrix elements over the vacuum and the single
particle state, and limiting ourselves to the first 
term in the sum over In> (the two-particle ap
proximation ) , we obtain 

-~. 2 - 112 pin( ) pout ( )] ( ') 1 e~'- ( w) [ ~'- P - ~'- P u_ P = 2 (2n) 6 

\' ' "'-~. 1 out ' X J dp1 dk1 4J e~'-:--= [P ~'-• (Pl) u_ (Pl) f p'. k,. p', k 
r1o A1 "V2rot 1 

-P~~(Pl)u_(p~) f~·. k,,p',k], (3.1) 
I 

where fp' k p' k is the Compton effect amplitude. 
1' 1, ' 

This relation makes it possible to express the de-
sired form factor in terms of the phase of the 
Compton scattering, but we shall limit ourselves, 
for simplicity, to the solution of the problem for 
the case in which the amplitude fp' k p' k is 1• 1, , 
computed by perturbation theory in the Born ap-
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proximation: method. Assuming that F2(p2 ) falls off at infi
nity not more slowly than a finite power of p2, 

and neglecting the asymptotically small term 
ig12 ( F 2 + F:) in (3.3), we get 

A A - i (p' - k1) + m A Al J I + e (p'- kx)' + m• e u_ (p ). 

F 1 (p2) - F~ (p2) = igu (P2) [F 1 (p2) + F~ (p2)] + ig1o (P2) e, 

(3.2) F2(p2)- F; (p2) = ig2!{p2) [F!(p2) + F~ (p2)] 

Then, after a number of calculations, we obtain 
2 

F t (p2) - F; (p2) = ~ ig tk (p2) [ F k (p2) + p; (p2)] + ig to (p2) e; 
k~1 

e2 [ m2 (p4 - 4p2m2 - m4) 
gu (p2) = - 8rc 8 (- p2- m2) I + 2p• (p2 + m2) 

+ m2 (p' + 3m2) In - p•} 
(p2 + m2)2 m• • 

( 2) e2 8 ( 2 2) a [ .3p' + m• g12 p =-g;- -p -m m - 2p• 

+ p2!m2In ~"]. 
e2 

g1o(P2) = -g;- 8 (- p2- m2) 

2m2 [- p2 + m2 2m' - p•J 
X p2 + m2 ---'--p--::-2- - -P.-+-m-2 In -m-2 ' 

m3 [3p2 + m2 1 - p2] 
>< p2 + m• ~ - p' + m2 In f7i2 , 

g22 (P2) = - ;: 8 (- p2 - m2) 

[ m2 (p2 + m2) m• - p2] 
X I + 2p• + p2 + m2 ln f7i2 ' 

x-m- [p2-m2 + 2m• l -p•] 
n• + m2 p• p• + m• m• • 

(3.3) 

The gzk for l = 3, 4 are certain functions (for 
brevity, we shall not write them out) having the 
following asymptotic values for - p2 - oo : 

( 2) e2 m 2 e2 2 e• m - p' 
g81 P ~Brcp2 , g32(P) ~ Brc, gao(P )~- 2rcp• In fii2, 

( 2 ) 3e•m• 1 - p2 2 , f e• m 
g41 P ~- 4rcps n fii2• g42(p )~.- Brcp•, 

, 2 

g4o(P2)~- 4:P2 • 

We note that, since gzk( -m2 ) = o, l = 1, ... , 4, 
we have Fz(-m2)- F{(-m2 ) = 0 and, conse
quently, in contrast with the work of Fainberg, 1 no 
difficulties arise here connected with the infrared 
divergence. 

The relations (3.3) represent the inhomogeneous 
Hilbert boundary problem for two unknown func
tions F 1 ( p2 ) and F 2 ( p2 ), which are analytic in 
the region described above. An exact solution of 
this problem meets with considerable difficulty 
and we shall therefore solve it by the iteration 

(3.3') 

The general solution of the Hilbert problem 
with the boundary condition (3.3') has the follow
ing form: 5 

-m' 

Ft (z) = exp lft (z)] {S"lt{z)- 2
1rc ~ gl (t) dt + } ' 

(t- z) exp [f 1 (t)J 
-oo (3.4) 

where the notation 
-m' 

2 + m• 1 arc tg g11 (t) dl eg10 

ft (z) =- -rc- j (I+ m•) (t -z) ' g1 = 1 + igu ' 
-oo 

is used. 
The solution (3.4) of the Hilbert problem was 

determined with accuracy up to an arbitrary poly
nomial S"lz(z ). Here as always in the dispersion 
approach, there is the problem of the boundary 
conditions that set off the solution uniquely. As 
such a condition, we require that the expansion of 
the imaginary part of the resultant solution in a 
series in the coupling constant coincide with the 
corresponding series of perturbation theory, which 
in this case does not contain any divergences. 
Furthermore, we get still another condition from 
(2,2), Fd -m2 ) =e. 

The solution satisfying this boundary condition 
is 

{ p2 + m2 
F 1 (p2) = e exp [f! (p2)] I - - 2-rc-

-m' 
X ~ gxo (t) dt + } , 

~co (t + m2) [1 + ig11 (I)) exp [f 1 (I)] (I- p2+ ia) 

F ( 2 ) = _ exp [r; (p2)) 
2 p 2rc -r g2x (t) [F I( I)+ F~ (I))+ g20 (t) e 

X j [1 + ig2z(I)J exp [r; (I)) (I- p2 + ie) dt, 
-00 

ff(p2)= Jim ft(Z). (3.5) 
z->-p"+ie 

As -p2 - oo, 

I 2 ez;snz t 2 -1 

Ft(p 2 ) ~ const. c;~n , F.(p2 ) ~ cr:s c~;) . (3.6) 

It is not difficult to note that further iteration 
does not change the asymptotic value of F 1 ( p2 ) , 

and of F 2 ( p2 ) either. Thus, for - p2 - oo , we 
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get 

in, out . (- p2)ez;sttz 
F.,. (p)->const-y.,. """"""iii2" , 

which differs significantly from the known result 
~p=p', when (Ip+m)G(p)rJ..L(p,p; O)_p2-.oo 
const·yJ..L (Ward's theorem). 

The solution (3.5) found for the Hilbert problem 
is the asymptotic solution of the set of dispersion 
equations 

-m' * 
p'+m• (' Fr(I)-F1 (t) 

Fl(P2)=e+~ j (l+m•)(p•-1-ia)dt, 
-00 

-m' F 'I) p* (I) 
F ( 2) = _1_ C • \ - 2 dt 

2 P 21ti j p2 - I- ia (3.7) 
-00 

with Fz- F{ determined from (3.3). 

4. THE ELECTRON PROPAGATION FUNCTION 
IN THE TWO-PARTICLE APPROXIMATION 

The results we have obtained make it possible 
to compute the spectral functions p1 and p2 in 
the two-particle approximation in the following 
fashion: 

+ ( 1 - dz) 3p•- P;;: + 2m• ]} , 

1 {p2 + m2 • • p2 + rn2 
PdP2 ) = 16" 2 ~ (F1F, + F1F2) +2m -P-2 -I F2l2 

rn • p2 + m2 • 
+ 2 e(F1 + F1) +-2 -2-e(F2 + F2 ) p p 

p2 _ 3m• • p2 + rn2 • 
+ 2p?. edz (Fa+ Fa)+ m -P-2 -edz (F4 + F4) 

me?. [ 4m2 2p2- m2]} + p•+m• -{!2 +(1-dz) --P2- • (4.1) 

It is natural that the functions F 3(p2) and 
F 4 ( p2 ) , which are connected in elementary fash
ion with F1(p2) and F2(p2 ), drop out of the ex
pressions for p1 and p2 in the case dz = 0, 
since, in such a case, as is seen from (2.1) and 
(2.3), they do not enter into the current matrix 
element. In calibration with dz = 1, in the e2 

approximation, the relations (4.1) coincide with 
the results of Gell-Mann and Low. 6 

It is seen from (4.1) that p1(p2 ) and p2(p2) 
have a simple pole at the point p2 = - m 2, as 
was to be expected. This corresponds to the in
frared divergence in G (p ), but it is not impor-

tant for the asymptotic case of interest to us. 
Asymptotically, we have for - p2 --. oo : 

whence we find that the renormalization constant 
-m• 

z;-1 = 1 + ~ Pl (p2) dp2 (4.3) 
-co 

is infinite. Nevertheless, it is not possible to con
firm that this result is preserved upon considera
tion of higher approximations, because it can be 
shown* that the exact spectral functions vanish 
more rapidly than in the two-particle approximation. 

In the given approximation, we get from (2.2), 
(3.6), and (4.2), 

A P (-- p2)e'/4rt' 
G(p)~--

p• m• ' 

Thus, in the two-particle approximation, in spite 
of the infinity of the renormalization constant Z21 , 

a false pole does not arise in G (p ), by virtue of 
the vanishing of r J..L ( p, p') as - p2 --. oo . 7 However, 
complete investigation of this problem in the dis
persion method, as also of a number of other simi
lar problems, requires consideration of higher ap
proximations, which entail great difficulties. 

In conclusion, the authors wish to express their 
sincere thanks to V. Ya. Fainberg for his constant 
attention to the research and for numerous discus
sions. 
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*The complete set of states in quantum electrodynamics 
includes states with a negative norm. Furthermore, it must be 
remembered that the result (4.2) coincides with the Born ap
proximation for fp;, k,, p', k. 


