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The scattering phase shifts and polarization of elastically scattered electrons are computed 
with account of the finite size of the scattering center. An expression for azimuthal asymmetry 
in double scattering has been obtained, as well as a correction to the usual Mott formula due to 
the second and fourth charge-density moments. 

1. INTRODUCTION 

THE distinguishing feature of the scattering of a 
partially polarized beam of electrons on nuclei is 
the so-called azimuthal asymmetry in the angular 
distribution of the scattering. As Mott has shown,! 
an effect of such a type can be observed in the 
double scattering of electrons on a point force 
center. This effect has frequently been confirmed 
experimentally. 2 However, the experiments have 
been carried out2- 4 in the region of low energies 
(several hundred kev ), when the wavelength of the 
electrons is large in comparison with the nuclear 
dimensions and, naturally, the nucleus can be re
garded as a point scatterer. As in the case of 
single scattering, it can be expected that for high 
energies of the incident electrons the effect of the 
structual features of an extended nucleus on the 
azimuthal asymmetry will be considerable. 

The azimuthal asymmetry for double scattering 
of a beam of Dirac particles on· a potential was 
computed from damping theory in refs. 5-7. In the 
present work we calculated the polarization that 
arises in the elastic scattering of an incident beam 
of electrons with account of the extended charac
ter of the heavy center. 

As is known, the azimuthal asymmetry in double 
scattering at the angles 81 and 82, cp 2 is charac
terized by the quantity 

o (91, 92) = 2~ (61) ~ (92), ~ (9) = i (fg"- f'g) 1 (ff* + gg'), 

(1) 

f and g are the Dirac amplitudes of scattering. 
Inasmuch as there is no azimuthal asymmetry in 
first approximation, it is necessary to solve the 
problem in the second approximation in ( Z/137 )2 
to obtain a finite value of 6. 

2. SCATTERING PHASES AND AMPLITUDES WITH 
ACCOUNT OF THE NUCLEAR DIMENSIONS 

In accounting for the effect of the finite dimen
sions of the nucleus on electron scattering, it is 
more advantageous to work not with the potential 
but with the density charge distribution inside the 
nucleus, which gives valuable information on the 
electromagnetic structure of the nucleus. Initially, 
it is easy to take account of the effects brought 
about by the finiteness of the nucleus in the ex
pressions for the phase shifts obtained in references 
7 and 8. However, it is not difficult to show that 
for the determination of Im f and Im g it suffices 
to limit oneself to phases computed in the first ap
proximation in the interaction potential, since the 
subsequent approximation gives the effects of po
larization for double scattering of the order of 
( Z/ 13 7 )2, which is insignificant for light nuclei. 
In this approximation, the phase shifts of elastic 
scattering 6~0 and 6?> of Dirac particles have 
the form 7•8 

00 00 

tano)1 •2) = - :~ (oc ~ n (kr) V (r) f 2 dr+ ~ ~ j~ ±I (kr) V (r)r2 dr) , 
0 (2) 

where V ( r) is the interaction potential with the 
scattering center, j l (kr) are the spherical Bessel 
functions, tik is the momentum, ctiK = en ( k~ + k2) tj.! 
is the energy, llk0/ c is the electronic mass, 
a = 1 + k0/K and {3 = 1 - k0/K. Here the plus sign 
relates to 6p> and the minus to 6f2>. Equations 
(2) possess the interesting feature that the ampli
tudes of f and g obtained with their help contain 
in themselves the imaginary parts of f and g com
puted by the usual diagram techniques in the second 
approximation,9 thus greatly simplifying the cal
culations. 
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The transformation 
7t 

jf (kr) = z!r ~sin ( 2 kr sin ~)cos ~ P1 (cos cp) dcp, (3) 
0 

where Pz (cos cp) are the Legendre polynomials, to
gether with account of the equation for the potential 
flV = - 41TZe2p ( r ), permits us to reduce (2) to a 
form suitable for computation: 

1t 

tan •<t.,) ____ 1 (ZeZkK r _ sin <p ( p ( ) 
u J oc I cos cp I 8k2 eli 0 sinZ('f'/2) 

+ ~ P1±1 (cos rp)] F (k, cp) drp. (4) 

Here we have introduced the universal notation for 
the form factor of the nuclear charge: 

00 

F (k,cp) = k ~"'( 2) ~ rp (r) sin ( 2kr sin ';-) dr. (5) 
2 Sin '!'/ 0 - / 

Equation (4) makes it possible to consider the 
effects brought about by the finite dimensions of 
the nucleus in both single and double scattering on 
nuclei for an arbitrary, spherically symmetric 
charge distribution, since the form factors of all 
models of the charge density which agree well 
with experiment are well known (see ref. 10). 
Summation of the corresponding Mott series for 
the amplitudes of f and g can be developed by the 
method advanced by Arutyunyan and Muradyan.U 
However, certain general results can be obtained 
even without taking a concrete form for the finite 
charge distribution p of the nucleus. In the case 
of not very large energies, all the form factors 
reduce to a rather simple expansion: 

F (k ) I 2 k2 ( 2) · 2 'I' r 2 k4 ( 4) · 4 'I' 1 , Cf! = --3 r Sin 2 1 i')- r Sin 2- T···• 

(6) 

where <r2 > is the mean square radius of the nu
clear charge distribution, <r4> is the so-called 
fourth nuclear charge density moment. For very 
high energies, it is necessary to consider higher 
moments. However, as the experiments of Hof
stadter have shown, 10 the first term of the expan
sion in F is sufficient up to 200 Mev. In the given 
case, integration in (4) can be carried out and the 
phase shifts [with account of the first three terms 
in (6)] finally take the following form: 

tano)L 2l = - c)L 2l + (Ze2kKj6 cti) (r 2 ) (oco1.o+ ~ot±1,o) 

- (le2k3Kj60 cti) (r4 ) [oc (81. 0- ~ ou) 

+ ~ (ol±1.o- ~ot±I.l)J. (7) 

Here c~1 • 2 > are the phase shifts of scattering on 
a point Coulomb center. Although the integral val
ues of c~ 1 • 2 ' diverge, finite results can be obtained 
in the determination of f and g, by means of a 

limiting transition (see references 8 and 11). Account 
of the higher moments can be carried out in similar 
fashion, i.e., one can obtain the expression for 
tan 6~ 1•2> in the form of an expansion over all the 
moments. For the determination of f and g in the 
approximation ( Z/137 )2, one must carry out a 
summation of the series: 

co . (1) . (2) 

f(8) = Z;k ~ [(l + l)(e2' 51 -I) +l (e2' 51 -I)]P1 (cos8), 
1=0 

co . (1) . (2) 

g(8) = 2;k ~ (- i'51 +l'51 )Pl1l (cos8), (8) 
1=1 

which is not difficult to obtain, inasmuch as the in
dices o z Z' in the expression (7) automatically take 
in summation over l, and the Coulomb amplitudes 
are known (see references 1 and 8). Omittingthe 
calculations, we give the expressions for f and gin 
the given approximation: 

1 (Ze2kK) ( 1 1 2 2 f (8) =- 2k" --eli (oc +~cos 8) 2 sin2 (9/2!' + 3 k <r ) 

_ _!_ k 4 < 4) • 2i \ + __!___ (Ze2kK ) 2[ a 2+ 2a~ + ~2 cos 9 I 
15 r Sin 2) 2k' eli 2 sin2 (9/2) n 

X sinf + ~k2 (r2) (I+ cos8)+ az+ r;cos9 k4 (r2)2 

+ io k4 (r4) ( rx2 cos 8 + 2~ cos2 8 + ~cos2 8- { rx~) J , 

g (8) = 2~3 (ze;~K) ~ (cot f- --}k2 (r2 ) sin 8 

+ 1. k 4 (r4) sin 8 sin2 ..2.) 
15 2 

_ _.!__ (Ze2kK )2 [ 2a~ sin (9/2) + ~2 sin 9 cos (912) I . 9 
2k5 eli 2 sin2 (9/2) cos (9/2) n Sin 2 

Here we have discarded the infinite imaginary am
plitudes of the point field, since they make no con
tribution to the scattering cross section and mu
tually cancel in the determination of 6 ( 81, 82 ). 

3. AZIMUTHAL ASYMMETRY 

As expected, it follows directly from (1) and (9) 
that fl( 8) = 0 in first approximation, and there 
is no asymmetry in cp for double scattering. Only 
terms of second order contribute to this effect, 
and we get the following expression from (1) and 
(9) for the degree of polarization experienced by 
the initially unpolarized beam of electrons in double 
scattering: 
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!!. (6) = f!.P (6) [I + fsin2 } ( k2 (r2) + f k4 (r2) 2 sin2} 

- _!_ k' (r4) sin2 ~) + _!_ co~~ (9/2) (2k2 (r2) 
5 2 3 In sm (9/2) 

The moments computed on the basis of this model 
are 

+ f k4 (r2)2 sin2}- i k' (r2)2- -j; k4 <r'> 

--j;k4 (r4 ) sin2{)]. 

The ratio A/ AP is shown in the drawing as a func
tion of the scattering angle for different values of 

(10) the energy of the incident electrons. As is seen, 

f!.P(6)= 2Z ve-1 (1- v2 je2 )'/, sins (9/2) . 9 
1371-v2e-2sin2(9/2) cos (9/2) In sm 2 (11) 

, represents the usual Mott formula for a point cen
ter. For the differential double-scattering cross 
section of electrons, with account of the nuclear 
dimensions, we have the expression 

a (61, 6z, 'P2) = ao (61)a0 (62)! 1 + o (61, 62) cos cp2 ], (12) 

where 

co (6) = aP [I - }k' (r2) sin2 { 

+ -49 k4 (r2) 2 sin4 ~ + 4k' (r4 ) sin'~] 
2 15 2 ' 

aP= _..!__ (Ze'kK \2 (1- vic-' sins (9/2)) 
4k• , e1i J sin' (9/2) (13) 

is the scattering cross section of a beam of elec
trons on a finite nucleus in the approximation 
employed. 

As is seen, Eq. (10), for high energies, will de
termine the effect of the nuclear dimensions on 
the polarization properties of the electron beam. 
For energies of the order of 50-100 Mev, we can 
simplify (10) and limit ourselves to the terms 
k2<r2>: 

!!. (6) = f!.P (6) [t + ~ k2 (r2) (sin2 ~ + cos~ (9/2) )] (14) 
3 2 In sm(9/2) ' 

As an illustration of the results obtained, we 
estimate the effects produced by the finiteness of 
the nuclear dimensions for C12 • The nucleus c12 

is relatively simple and has been well studied in 
experiments of electron scattering. Frego and 
Hofstadter10 studied in detail the charge distribu
tion in the ground state of c12 • The most reason
able value of the mean square radius - 2.40 f
was determined. In particular, the model with 
charge distribution density 

P =Po (1 + rxr 2 /a~) exp (- r 2 fa~). 

gave the best agreement with experiment with 
a = 4/3. Here a0 is a parameter proportional to 
the mean square radius, and is chosen in agree
ment with experiment. We select one of the pos
sible values, a0 = 1.635 x 10-13 em. The normal
ization factor can be determined from the con
dition 

00 

~ 4ttr2p (r) dr = 1. 
0 

Dependence of 
M f!.P on the scatter
ing angle for the 
electronic energy 
values: curve 1-
100, 2-200, 3-
300, 4-400 llloc'. 

• 

even for E = 100 m0c2, the deviations of A from 
the case corresponding to a pure point distribu
tion amount to 20-30% (for mean angles). For 
E = 200 moc2, the effect of the extension of the nu
cleus on the polarization is already appreciable. 
For high energies of the electrons ( ~ 150 Mev), 
along with elastic scattering, the process of meson 
formation is also possible, which is not considered 
in the present work. 

On the basis of the results obtained, it is pos
sible to draw the following conclusions. In po
larization phenomena for the double scattering of 
high energy electrons, the finite dimensions of the 
nucleus play an important role. For small angles 
and low energies, this effect is insignificant; how
ever, at large angles, it predominates over point 
scattering • Unfortunately, the absence at the 
present time of experiments on double scattering 
of electrons at high energies still does not permit 
us to estimate the accuracy of Eq. (10). It can be 
expected that comparison with experiment will 
make it possible to find some additional informa
tion on nuclear dimensions, and to make precise 
the choice of one model or another. 

I express my thanks to Prof. A. A. Sokolov for 
discussion of the results. 
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