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A method is proposed for the calculation of the wave function and energy levels of nucleons 
moving in an oscillator potential. The general case of a potential which does not possess 
axial symmetry but in which account is made of spin-orbit interaction is considered. An es­
sential feature of the calculations is that use is made of smallness of the spin-orbit coupling 
constant. In the limiting case of a strongly deformed nucleus the solution can be obtained in 
a simple analytical form. Investigation 'of this solution indicates that the spin-orbit interac­
tion significantly affects the axial symmetry of the nucleus. Thus the axially symmetric shape 
of the nucleus becomes more stable and is the cause of the discontinuous nature of the transi­
tion from axial nuclei to nonaxial ones. 

1. INTRODUCTION 

THE question of the motion of a particle in an 
anisotropic oscillator potential with account of 
the spin-orbit coupling (s.o.c.) plays an impor­
tant role in the treatment of bound states of in­
dividual nucleons by means of a generalized 
model. This problem was solved by Nilsson, 1 

who calculated the wave functions and the eigen­
values of the nucleon energy for the axially­
symmetrical case (two of the three oscillator 
frequencies coincide ) . 

In connection with the theory of nonaxial nu­
clei, developed by Davydov and his co-workers, 
considerable interest attaches to an investigation 
of motion in an oscillator field in the general, 
nonaxial case (all three frequencies different). 

Gellikman3 calculated the equilibrium deforma­
tions of the nuclei, using the anisotropic oscillator 
model, and showed that the equilbrium form of the 
nucleus has no axial symmetry if the number of 
nucleons in excess of the filled shell (or holes in 
the shell) is more than two. No account of the 
s.o.c. was taken in these calculations. This raises 
the question of the extent to which the results of 
Gellikman are modified by allowance for the s .o.c. 
It is also clear that the s .o .c. should exert a sig­
nificant influence on the wave functions of the 
nucleons, and must therefore be taken into ac­
count in the calculation of the magnetic and quad­
rupole moments of the nuclei, the ~-decay half 
lives, and other quantities that characterize the 
nucleus. 

In the present paper we propose a method of 
calculating the wave functions and eigenvalues of 
the energies of nucleons moving in an oscillator 
field for the general case of absence of axial sym­
metry and presence of s.o.c. 

It must be noted that the method proposed here 
differs substantially from that of Nilsson. Nilsson 
employs the isotropic-oscillator representation 
and diagonalizes both the s.o.c. and the terms due 
to nonsphericity. In this connection, the matrix 
elements which are not diagonal in N (the princi­
pal quantum number of the shell for the isotropic 
oscillator) are discarded. Nilsson proposes an 
approximate method of allowing for these discarded 
elements. The inaccuracy connected with this ap­
proximation is of order EK ( E is the nonsphericity 
parameter and K is the parameter of the s.o.c.) 
and is comparable with the value of s.o.c. at not 
too small deformations. In addition, this method 
of allowing for the discarded terms is difficult to 
employ in many cases of practical importance 
(for example, to correct the wave functions). 

The method we propose is based essentially on 
the smallness of the s.o.c. ( K z 0.05 ), which is 
diagonalized in the anisotropic-oscillator repre­
sentation, and only terms of order K2 are dis­
carded. 

2. THE HAMILTONIAN 

The Hamiltonian describing the motion of nu­
cleons in a nuclear field with allowance for the 
s.o.c. has the form 
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H=H0 -f-As[gradV(r)xp], H0 =p2 /2+V(r), (1) 

where A. is the s.o.c. constant (we use a system 
of units in which M = ti = 1, M is the nucleon 
mass). 

In the case of an anisotropic oscillator po­
tential 

V (r) = -} ~ wz xz, (2) 

where in the general case all three parameters 
(frequencies ) w1 are different and satisfy the 
supplementary condition WxWyWz = w~ = const. 
Substituting (2) in (1) we obtain 

H = i- ~ (pz + w; xz) + ~A ~ Etkl r1t W! Xk Pt. (3) 
t tkl 

where O'i are the Pauli matrices. 
The Hamiltonian (3) is conveniently rewritten 

in terms of the following representation for the 
operators xk and ~: 

(4) 

where ak and ~ are known operators with com­
mutation relations 

(5) 

In the representation considered here the operator 
H has to form 

H = f ~ Wt (at at + atat) -1- ix ~ Etkl cr; ht at a1 
t ikl 

where K = -A.w0/2 is the dimensionless s.o.c. 
parameter 

We see from (6) that the s.o.c. operator breaks 
up into two terms, containing the operators ar 
and ak, respectively, in the combinations ak_a1 
and akal - ak_a[. 

We can use perturbation theory to estimate 
the role of these terms. In the second approxi­
mation of perturbation theory, terms of the type 
azak lead to energy denominators of the form 
w1 + wk, which can vanish only in the limiting 
case as wk and wz -- 0; but in this case, as is 
readily seen from (6), the numerator will also 
tend to 0, and much faster than the denominator 
at that. This difference in the behavior of the 
energy denominators, together with the small­
ness of the s.o.c. constant ( K ~ 0.05 ), makes it 
possible to neglect, with sufficiently good de­
gree of accuracy (up to quantities of order K2 ) 

(6) 

the terms containing a1ak- a[ak_ in the s.o.c. 
operator. In this approximation, the Hamiltonian 
has the form 

H = + ~ Wt (at at +at at)+ ix ~ Etkt crt fkt at at. (7) 
ikl 

Because all the operators ai and ak enter into 
the Hamiltonian only in pairs of the form af ak, 
the matrix elements for states with different val­
ues of N (the principal quantum number of the 
shell) vanish, and the determination of the eigen­
values of the Hamiltonian (7) reduces to diagonal­
ization of matrices with a finite number of dimen­
sions for each specific value of N. 

In the diagonalization of the Hamiltonian in the 
representation of the anisotropic oscillator with­
out the s .o .c., the basis vectors will be denoted by 
I nxnynz ± > (the signs ± correspond to spin pro­
jections ±%). The matrix elements of the opera­
tors ak are determined here by the relations 

ax 1 nxnunz ±> = V nx i nx- lnunz ±>, 
+ v--ax I nxnynz ±> = nx + I I nx + lnynz ±> 

and analogously for ay, ay., az, and a~. The so­
lution of the Schrodinger equation with fixed N 
can be written in the form 

'YN= ~ Cnxnynz±Jnxnynz±). (8) 
nx+ny+n2 =N 

If we take into account the invariance of the Ham­
iltonian under rotation through an angle rr about 
the principal axes of the ellipsoid (symmetry 
group D2 ) and under the transformation xi- xi, 
Pi- -pi, ai- -ai, connected with time inver­
sion, we find that each energy level corresponds 
to two solutions lJFW and l¥~. Here the functions 
lJFW contain only the basis vectors corresponding 
to the eigenvalues of the operator U z = 
O'z ( -1 )nx + ny of rotation through an angle rr 
about the z axis, equal to + 1, while the function 
lJF~> contains vectors corresponding to the eigen­
value -1. In addition, it is found that the coef­
ficients C, which determine these functions, are 
connected by the relation 

(9) 

and have the form 

(10) 

where Anxnynz are real numbers. 
Thus, each solution is characterized by a def­

inite number N (N = 0, 1, 2, ... ). For a given 
N, there are (N + 1) (N + 2) basis vectors 
I nxnynz ± > . The diagonalization 0f the Hamil-
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tonian in this representation makes it possible 
to construct the same number of solutions. Since 
the solutions of type lJ!W and lJ!~> correspond 
to different eigenvalues of the operator Uz, 
which commutes with the Hamiltonian, these 
functions can be obtained independently, and the 
corresponding secular equation will be of degree 
not ( N + 1 ) ( N + 2 ) , but (% ) ( N + 1 ) ( N + 2 ) . 
In addition, it is clear that there is no need fo:r 
solving the equation for both l¥<iJ and lJ!~. By 
obtaining w-<~ we can directly construct w-~> 
from (9). Finally, relation (10) shows that each 
coefficient c<+> is expressed through only one 
real number. 

3. LIMITING CASES 

We assume that Wx:::: Wy:::: Wz (which obvi­
ously does not limit the generality) and consider 
several limiting cases. 

a) Case of a strongly nonspherical with large 
degree of nonaxiality: Wx - Wz »K, Wy » K, 
Wx- Wy » K. In this case the s.o.c. makes a 
contribution of order K2 and can be disregarded. 

b) Case of strongly nonspherical nucleus with 
arbitrary nonaxiality: Wx- Wz » K, wy- Wz » K, 
Wx - Wz arbitrary. 

In this case, which is of great practical interest, 
we can discard in the s.o.c. the terms which are 
not diagonal in nz, since they give corrections of 
order K2• We then obtain 

1 + + ) H =A (N, nz) + 2 (wx -wy)(axax-ay ay 

+ ixf xy (a; au- a~ ax) Oz, 

A(N, nz) = ~(wx+wy)(N -nz) 

+ nzWz + f(wx + Wy + Wz). 

By means of the canonical transformation 

(11) 

ai' = cos cpai - i sin rrat' a;= cos cpax + i sin cpay, 

at' = - i sin cpai +cos rpat, ay = i sin cpax +cos cpay; (12) 

sincp = az V(l-cos 2cp);2, coscp = Y(l +cos2cp)j2, 

cos 2rr = ~/V ~2 + (2x') 2 , ~ = (wx- wy)jw0 , x' = xf xyjw0 

(13) 

the Hamiltonian (11) assumes the form 

H =A (N, nz) + fw0 V ll2 + (2x') 2 (a:t·a~- at'a~). (14) 

Since the transformation (12) is canonical, the 
spectrum of eigenvalues of the operators aX:'ax 
and avay will be the same as for the operators 
a~ax and ay.ay (their eigenvalues and n~ and ny. 
are integers, including zero). Comparing (14) and 
(11) we reach the conclusion that an account of the 

s.o.c. reduces in this case the problem of the en­
ergy levels to the problem of the oscillator with­
out s.o.c. but with other frequencies: wx and wi 
are replaced by frequencies w~ and wy. such 
that 

~~ = (w~- w~)/wo = V ~2 + (2x') 2 • (15) 

It follows therefore that if the solution of the 
problem of minimum energy of the nucleus with­
out account of the s.o.c. leads to an equilibrium 
value of the parameter ~' = ~'o , then allowance 
for the s .o .c. leads to a reduction of ~, i.e., to 
an increase in the nonaxiality, in accordance with 
the relations 

~o = Y ~~2- (2x')2, 
~o= 0, 

~o'"> 2x', 
~0' < 2x', (16) 

which follow from (15) and from the fact that ~' 
is defined only in the region ~' :::: 2 K'. If ~'o is 
found to be in the region 0 :::: ~'o :::: 2K', this 
means, as shown in Fig. 1, that we must disre­
gard this "nonphysical" region. The minimum 
energy will correspond here to the value ~'o = 

2K' or, according to (16), ~ 0 = 0. 
It is seen from Fig. 1 that if a small pertur­

bation of the nucleus changes the position of the 
energy minimum (dotted curve ) , but does not 
take it out of the nonspherical region, then ~0 = 

0 as before. We conclude thus that the s.o.c. 
stabilizes the axial form of the nucleus, making 
it stable with respect to small perturbations. 
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FIG. 1. Dependence of the energy of the nucleus on the 
nonaxiality; a-effective oscillator without s.o.c., b-real 
oscillator. The shaded (nonphysical) region on Fig. a corres­
ponds to the point ~ = 0 on Fig. b. The solid curve on Fig. a 
and the corresponding solid curve on Fig. b show the depend­
ence of the nuclear energy on the nonaxiality; the dotted line 
represents the same dependence in the presence of a small 

' perturbation. 

Figure 2 shows, by way of illustration of the 
influence of the s.o.c. on the axiality, the de­
pendence of nonaxiality parameter y on the num­
ber of nucleons in the shell N = 3, obtained by 
Gellikman without accounting for the s.o.c., and 
the dependence calculated from ( 16) with K' = K = 

0. 05 and {3 = 0.4. The parameters {3 and y are 
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FIG. 2. Dependence of the parameter of nonaxiality of the 
nucleus y on the number of nucleons m in the unfilled shell 
(N "' 3). The dotted line shows the same dependence in the 
absence of s.o.c., while the solid one corresponds to the 
presence of s.o.c. 

related with the frequencies wx, wy. Wz by 
equations that correspond to the usual definition 
of f3 and y: 

Wx = (1 +So+ s1) w (s0, s1), Wy = (1 + s0- s1) w (s0, s1), 
Wz = (I - 2s0) w (s0 , s1), 

so= i V5f4n~cosy, s1 = VI5j4:n:~siny, (17) 

w ( s 0, s 1 ) is determined from the requirement 
3 WxWyWz = w0. 

It is seen from Fig. 2 that the s .o .c. leads to 
greater stability of the axial form of the nucleus 
(in this case the nucleus becomes nonaxial with 
five external nucleons, and not with three as in 
the absence of s .o .c.). In addition, the transition 
from the axial to the nonaxial form becomes 
sharper -the minimum and nonaxiality amounts 
to y = 15° and not 6.5°. 

In conclusion, we determine the wave functions 
for this limiting case. The wave function of the 
state characterized by the quantum numbers nx, 
ny, nz, and ~ ( ~ = ± 1/ 2 is the spin projection) 
can obviously be written in the form 

"'I":'n' =(n~! n'! nz!)-''•(a+f~(a+f~(a+tzf000+).(18) 
X ynz II X y Z -

Substituting in (18) the expressions a~' and 
ay', according to (12), we obtain finally 

'f±, ' = (n' ! n'! nz! )-'/• (cos ma+ - i sin ma+)n~ 
nxnynz x y 'I" x 't' y 

X (- i sin cpa;+ cos cpaj"fu (aftz f 000 +). (19) 

The authors express deep gratitude to G. Ya. 
Lyubarski'l for valuable discussions. 
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