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The radiation of an optical source characterized by an arbitrary frequency which moves uni
formly in an optically anisotropic transparent medium is considered. The phase velocity, the 
velocity along the ray, and the group velocity of the radiation produced by such a source are 
investigated. 

THE theory of the Cerenk.ov effect in crystals was 
developed as far back as 1940.1 A number of inter
esting features of this radiation in optically aniso
tropic media (which have still not been investi
gated experimentally) have been pointed out in 
theoretical papers. 2•3 In recent years the Doppler 
effect in optically anisotropic media has also been 
analyzed theoretically. 4 The general features of 
radiation produced by various kinds of optical 
sources moving uniformly in refractory media 
have also been treated. 5 The critical velocity re
quired by such sources for the production of vari
ous forms of radiation ( Cerenk.ov radiation, com
plex Doppler effect, etc.) has been studied in de
tail only for an isotropic medium;6 the case of an 
anisotropic medium has received only brief treat
ment.5 In the present paper this problem is con
sidered in greater detail. 

In an optically isotropic medium, Cerenkov ra
diation is produced at a frequency w when the ve
locity of the charge reaches the phase velocity of 
light u ( w) = c/n ( w) for this frequency. This 
familiar condition comes directly from the rela
tion between the frequency of the Cerenkov radia
tion and the direction of the wave vector: 

(vn(w)Jc)cos8= 1. (1) 

The minimum value of the angle (} between the 
wave vector and the velocity is zero; consequently 
the minimum velocity is given by v = u ( w). 

The phase velocity u ( w) is just as important 
for the radiation of an arbitrary source moving in 
an optically isotropic medium. The radiation spec
trum of a uniformly moving system characterized 
by a frequency w0 = w0 ~ is given by6 

k(w)cos8=(w±w0)Jv, k(w)=wn(w)Jc=wJu. (2) 

Here k ( w) is the magnitude of the wave vector 
for frequency w. In Eq. (2) the plus sign is taken 

for the so-called anomalous "super luminal" Dopp
ler frequencies, if they are possible; the minus 
sign corresponds to the usual case of radiation in 
the medium. The Cerenk.ov radiation spectrum is 
obtained from Eq. (2) if we take w0 = 0. If both 
sides of Eq. (2) are divided by w, it becomes iden
tical with Eq. (1) when w0 = 0. 

Equation (2) contains the phase velocity only, 
and is thus independent of the group velocity. This 
is natural, since the propagation of spectrally de
composed light, i.e., light at a given frequency w, 
is determined completely by its phase velocity in 
an isotropic medium. Thus, the presence of a 
given frequency component in a spectrum (i.e., 
the conditions that must be satisfied for its pro
duction ) depends on the phase velocity and not the 
group velocity. However, it is reasonable that the 
appearance of the radiation itself, not a given fre
quency component in the radiation, is to be associ
ated with the group velocity. 5•6 It is reasonable to 
expect that the group velocity will play the same 
role for radiation in an optically anisotropic me
dium. However, the propagation of light in aniso
tropic media has a number of special features. 
For this reason the critical velocity of a radiator 
moving in an anisotropic medium requires special 
analysis. 

An important factor in anisotropic media is that 
the phase velocity depends on the polarization of 
the wave as well as the direction of the vector 
k ( w ). We consider monochromatic waves of a 
given polarization, which propagate from some 
point. If we select waves for which the vector 
k ( w) lies in a small solid angle (i.e., a narrow 
cone of normals to the wave surface), we find that 
the directional dependence of k ( w ) is important 
as well as its magnitude. Because of this depend
ence, the direction of propagation of the waves, 
i.e., the direction of the ray, is not the same as 
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the direction of the vector k ( w ) . Hence the ve
locity u' ( w) is important; this is the velocity 
with which the phase of the wave is displaced in 
the direction of wave propagation, i.e., in the di
rection of the ray. Obviously, this velocity is 
given by 

u'(w)=u(w)jcosrx=cjn(w)cosa, (3) 

where a is the angle between the ray and the nor
mal to the wave (cf. Fig. 1). 

If we lay off the velocity u' in the direction of 
wave propagation, i.e., in the direction of each ray, 
we obtain the so-called ray surface, which is the 
surface of constant phase for waves that emanate 
from a given center. In applying the Huygens prin
ciple to an anisotropic medium, the surface of the 
waves propagating from each point is actually ob
tained by plotting the ray surface to some appro
priate scale. Thus, in problems involving the prop
agation of light in anisotropic media, the velocity 
u' plays the same role as the phase velocity in 
isotropic media. In particular, as is well known, 
the wave surface for Cerenkov radiation can also 
be obtained by means of the Huygens principle. 
It is not difficult to extend this procedure to an 
anisotropic medium and to verify in this case that 
the threshold for the appearance of a given fre
quency component w is given by the relation 
v = u'.5 

The analogy between u' and the phase velocity 
in an isotropic medium extends to the relation be
tween u' and the group velocity w. If, from u' we 
form k' = w/u', which is analogous to the wave 
vector, then 

ak' jaw= I jw, k' = wju' = kcosrx. (4) 

Actually u' is the velocity of propagation of phase 
in the direction of the ray; the group velocity is in 
the same direction, so that ak' law must have the 
same significance as dk/dw in an isotropic me
dium. In this case, as in an isotropic medium, the 
notion of a group velocity is meaningful only in the 
frequency region in which the optical absorption is 
small. We shall assume that this condition is sat
isfied in the case at hand. 

Because of its properties, u' might be called 
the second phase velocity. We shall call it the 
ray velocity. 

The velocity u' also has an independent mean
ing, since we do not actually deal with a plane 
wave with a precisely defined direction, because 
true monochromatic waves do not exist. Just as 
a wave packet in some small frequency range prop
agates with a group velocity w, a packet of mono-

chromatic waves in some angular range defines a 
ray velocity u'. In order to obtain plane waves, 
each of which is characterized by a vector k, it 
is necessary to perform a double expansion, i.e., 
in frequency and in direction. Each of these par
tial waves is then characterized by the vector k, 
(i.e., by the frequency) and by the phase-velocity 
vector. Hence, Eqs. (1) and (2), which contain 
the phase velocity, can be generalized to the case 
of optically anisotropic media if by k we under
stand the magnitude of this vector for a frequency 
w and for a given direction of the normal to the 
plane of waves with a given polarization. 

It should be noted, however, that the magnitude 
of k depends on the angle 8. Hence, in determin
ing the value of v necessary for the production 
of a frequency component w, we cannot proceed 
as in the case of an isotropic medium, i.e., we 
cannot simply take 8 = 0. The point is that when 
8 changes the quantity n ( w) also changes; con
sequently the maximum value of n ( w ) cos 8, 
which determines the minimum value of v in 
Eq. (1), is not necessarily obtained when (} = 0. 
Actually, the maximum value of this quantity occurs 
when (} = a, where a is the angle between the di
rection of the ray and the vector k. Comparing 
Eqs. (1) and (3) we see now that v = u'. 

The critical-velocity problem for radiation in 
optically anisotropic media can be understood by 
an analysis of Figs. 1 and 2. 

In Fig. 1 we show the surface for the vectors 
k ( w) for an optically inhomogeneous medium, 

FIG. 1 

, 
a 11 

for example for the extraordinary ray in a uni
axial crystal. If the k surface is given, it is 
easy to find the k' surface. To find the k' cor
responding to a given k = k1 = OB, we lay off the 
plane tangent to the surface at the point B. Then 
the normal OB' to this surface determines the 
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magnitude and direction of the vector k'1• * 
It is easy to determine the directions of the 

vectors k ( w) which satisfy Eq. (2) for a velocity 
v if we use the graphical construction proposed 
by Pafomov. 3•5 We assume that the velocity of the 
radiator with respect to the k surface is given by 
OC. In the direction OC we lay off a segment OA 
of length 

(5) 

We assume here, as in Eq. (2), that the sign and 
magnitude of w0 are chosen in accordance with the 
conditions of the problem. For example, for ordi
nary Doppler frequencies we take w0 negative. 
If, in addition, w < w0, the quantity b is negative 
and the segment OA must be laid off in the direc
tion opposite to OC. 

In order to find k, we lay off the plane a, which 
passes through the point A and is perpendicular to 
the segment OA. This plane intersects the surface 
along some curve, which, as can be shown easily, 
represents the geometric locus of the ends of the 
k vectors which satisfy Eq. (2). For these vectors 
k cos e = b, where e is the angle between the 
given directions of k and v (cf. Fig. 1). Keeping 
in mind the value of b, we obtain Eq. (2) from 
Eq. (5) identically. 

For fixed values of w0 and w, b is inversely 
proportional to v. It is apparent that the plane a 
does not intersect the wave-vector surface for 
every value of b, that is, the frequency w is not 
generated for every velocity. The critical veloc
ity is obtained when plane a touches the surface. 
From Fig. 1 this condition corresponds to b = OA', 
with plane a coinciding with a'. Under these con
ditions the k cone contracts about the direction 
OD. Since the plane a' touches the surfaces at 
the point D, the normal to the plane, i.e., b = OA', 
coincides with the direction of the ray conjugate 
to k = OD. In this case b = k'. Thus, from Eq. 
(5) we have 

k' ( } _ ~ , _ ro ±roo 
w - u'2 u - ---v.- v. 

In the particular case of Cerenkov radiation, 
i.e., for w0 = 0, we immediately obtain from Eq. 

(6) 

*It is easy to verify this construction. For small devia
tions of the vector k from k, the end of the former slides 
along a plane which is tangent at point B. Hence the projec
tion of vector k on OB' is not sensitive to small changes in 
the wave vector. Whence it follows that the phases of a 
packet of plane waves characterized by vectors k which are 
almost in the direction of k, are the same along the axis OB'. 
Thus interference effects cause addition of these waves in the 

---> 
direction OB',. i.e., k~ = OB' is a ray which corresponds to the 
normal to the plane of the wave in the direction of k,. 

(5) the condition v = u' for the critical velocity. 
Obviously Eq. (6) is a general condition which de
termines the velocity necessary for the appearance 
of a frequency component w. 5 If b [right side of 
Eq. (6)] is positive, u' is in the same direction as 
v. For negative values of b, these two vectors 
are in opposite directions. From Fig. (1), this 
condition corresponds to the case in which the 
plane a' (tangent to the k surface) is to the left 
of the origin. 

In the case shown in Fig. 1 the k surface is an 
ellipsoid. In order for a frequency component w 
to appear in the spectrum the magnitude of b must 
be smaller than the corresponding radius vector of 
the ellipsoid, that is to say, v must be greater than 
some critical value. If the k surface were hyper
bolic the reverse would hold. The quantity b would 
have to be greater than the corresponding radius 
vector and this means that the frequency compo
nent w could be radiated only at a velocity smaller 
than the critical velocity. 

In Fig. 1 we show the k surface for the extra
ordinary ray in a uniaxial crystal. In order to find 
the complete radiation pattern, a similar plot must 
also be made for the ordinary ray. In this case 
the k surface is a sphere, so that the cone of k 
vectors that satisfy Eq. (2) for the frequency w 
is circular. As the velocity is reduced, this cone 
contracts about the direction of motion (or in the 
opposite direction for negative v ). The critical 
velocity v = u = u' for the ordinary rays differs 
from that for the extraordinary rays. The only 
exception is the case in which the radiator moves 
along the optical axis of the crystal.* 

The radiation in a biaxial crystal exhibits a 
special feature. As is well known, the k surface 
cannot be represented by two independent surfaces 
in this case. The surface is more complicated in 
a biaxial crystal. However, a construction similar 
to that shown in Fig. 1 results in two k cones. The 
threshold velocities necessary for the production of 
each of these radiation cones are different, and 
when the velocity approaches the critical velocity 
the corresponding cone contracts about the direc
tion of the k vector conjugate to the ray directed 
along the velocity (or opposite to it). Just as in 

*It should be recalled that Eq. (2) only gives possible di
rections for the vector k for radiation at a given frequency. 
For an actual radiation source the wave amplitudes for certain 
directions of k or even for the entire k cone can be zero. For 
example, in Cerenkov radiation, dipole radiation, or radiation 
from a linear multipole oriented in the direction of motion, 
there is no cone due to ordinary rays when the motion is paral
lel to the axis of the crystal, because waves of the appropriate 
polarization cannot be generated. 



1266 I. M. FRANK 

a uniaxial crystal, each direction of the k vector 
for waves of a given polarization is associated in 
this case with one direction of the ray, and vice 
versa. 

The above considerations apply in all cases, 
except for cases in which the direction of the ray 
or the k vector is close to one of the optical axes 
of the crystal. In these cases, features analogous 
to internal and external refraction appear. These 
are as follows. It is well known that a ray which 
coincides with the optical axis of a biaxial crystal 
is to be associated with a k -vector cone rather 
than a single k. Hence, if a radiator moves along 
the axis of the crystal and its velocity approaches 
the critical velocity, the k cone does not contract 
about one direction, in contrast with the usual 
case. The threshold in this case is the k -vector 
cone associated with the ray directed along the 
axis (this cone is common for both forms of ra
diation in the crystal ) . 

There is also an analog for internal refraction. 
In a biaxial crystal there is a direction for the k 
vector close to the direction of the axis which con
tains a whole cone of rays rather than one ray. 
Hence, if this direction satisfies Eq. (2), propaga
tion takes place in the direction of the generatrices 
of the cone which is associated with this k. It is 
apparent that in this case the light emanates from 
the crystal in the form of a parallel beam of finite 
thickness. This feature, which is a consequence 
of internal refraction, has been pointed out by 
Ginzburg.1 

Up to this point we have discussed radiation at 
a definite frequency w. From what has been said 
it follows that the ray in whose direction a given 
frequency w first appears (or disappears) as v 
changes is in the direction of v (or is in the oppo
site direction if b is negative). Actually a spec
trum of frequencies is always radiated. For each 
of the frequencies there is a characteristic radia
tion cone, and the frequency spectrum associated 
with a given form of radiation (for example the 
spectrum of ordinary or "super luminal" Doppler 
frequencies, or any component of the complex 
Doppler effect) occupies some finite solid angle. 

We now consider the conditions under which a 
given form of radiation is produced and the fre
quency is not given. We first consider the case 
of radiation in the direction of a ray that coincides 
with the direction of motion. In Fig. 2 we show the 
dependence of k' on frequency w for waves of a 
given polarization in a medium. The direction of 
the ray for which k' ( w) = ky( w) is taken to co
incide with the direction of the velocity. In this 

FIG. 2 

same figure we draw lines corresponding to three 
possible values of b: 

b0 =wjv, b1 =(w-wo)fv, b2 =(w+wo)fv. (7) 

It is apparent that the intersections of these lines 
with the k\r( w) curve yields the frequencies that 
satisfy Eq. (6), i.e., the frequency components ra
diated along the ray in the direction of the velocity; 
these are the threshold frequencies for a given ve
locity. The intersections with the line b0 gives the 
Cerenkov radiation frequencies; intersections with 
b1 give the ordinary Doppler frequencies, with b2 

the "super luminal" Doppler frequencies. 
Figure 2, as can easily be shown, is completely 

analogous to Fig. 1 of reference 6, which shows the 
features of radiation in an optically isotropic me
dium. The only difference is the fact that there 
the angle (} is arbitrary while here it is fixed in 
such a way as to give the direction of the ray (i.e., 
(} = a ) . The conclusions that can be obtained from 
an analysis of the curves will obviously be the 
same in both cases. They are the following. The 
slope of ky( w) is, in accordance with Eq. (4), 
dkv /dw = 1/w. Here w is the group velocity for 
frequency w for a ray in the direction of the ve
locity. The slope of the line b is 1/v. When v 
changes the slope of the line changes and the point 
at which it intersects the curve is displaced, that 
is to say, the threshold frequency is changed. The 
intersection vanishes or appears for those values 
of v for which the line b is tangent to the kv ( w ) 
curve. In order for the line b to be tangent it is 
necessary that at the point of tangency the slope 
of kv (w), i.e., dk\r(w)/dw, be equal to 1/v. Thus, 
the production of radiation or new components re
quires that 

v = w (w~im!), (8) 

where wum is the frequency which first appears 
in the radiation spectrum [this frequency must 
satisfy Eq. (6)]. 

The quantity b1 can be negative if w < w0• In 
this case, in Eq. (6) we must substitute k' ( w) for 
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a ray directed in the direction opposite to the ve
locity and make k' ( w) negative. Changing the 
signs on both sides of Eq. (6), we then obtain 

k'___v (w) = (w0 - w) / V. (6a) 

Here lev( w) is the vector k' for the ray directed 
opposite to the velocity vector. If a reversal of 
direction of the ray does not change the magnitude 
of k', as is the case in a usual medium, the solu
tion of Eq. (6a) can again be found by means of 
Fig. 2. The sought Doppler frequency is obtained 
as the intersection of the line bi = ( w0 - w )/v 
(dashed line in Fig. 2) with the ky(w) curve. As 
is apparent from the figure, an intersection of this 
kind always exists, corresponding to the obvious 
fact that in the ordinary Doppler spectrum there is 
a frequency component which can be radiated in the 
direction opposite to the direction of motion. In 
principle, more than one intersection is possible 
(complex Doppler effect). Just as for positive b, 
the threshold for the complex Doppler effect re
quires (beside intersection) that the line b1 be 
tangent to the k_y( w) curve. Repeating the analy
sis given above we find that in this case the group 
velocity must be negative and equal to v. The 
negative sign means that the group velocity is op
posite to the vector k~y(w), i.e., the velocity. 
Thus, the condition for the appearance of a new 
radiation component is again given by Eq. (8). 

All of these results are completely analogous 
to those obtained earlier for an isotropic medium 
(cf. references 5 or 6). If we consider the possible 
intersections of the lines b with the kv ( w ) curve 
it is apparent (as in an isotropic medium) that 
the presence of a frequency w' for which w ( w') 
< v means that there must also be a frequency w" 
for which w ( w") > v, that is to say, the composi
tion of the radiation is necessarily complex. Let 
us assume that at the point of intersection of the 
line b with the kV ( w ) curve the curve rises 
more sharply than the line, i.e., dk\r/dw = 1/w 
> 1/v (cf. for example point A on the line b2). 

This means that at the point of intersection the 
line moves from the region above the kV ( w ) curve 
into the region of the plane under the kv ( w) curve. 
Then, at higher frequencies there must be at least 

one intersection for which dk\r /dw = 1/w < 1/v 
(point B in Fig. 2 ). At this intersection, the line 
moves from the region under the curve to the re
gion above the curve. That this is true follows 
from the fact that for sufficiently high w the tan
gent to the kv ( w ) curve approaches 1/ c (in the 
limit n = 1 and a = 0 ) and, since 1/ c < 1/v, all 
lines b ·.for high w must be above the k\r( w) curve. 

We may note that the meaning of the provisional 
term "complex radiation" for an anisotropic me
dium is somewhat different than the meaning of 
this term for an optically isotropic medium. In 
an isotropic medium complex radiation means that 
there are several frequency components for a set 
of values of v, w0, and 0. In the anisotropic medium 
there are two radiation cones for the two polariza
tion directions. In addition, there are two other 
possibilities: waves at different frequencies may 
have the same directions for k, i.e., coincident 
wave normals, or waves at different frequencies 
may have the same ray directions. As is appar
ent from the above, here we have considered the 
case in which the several frequencies for a given 
form of radiation are characterized by the same 
ray direction. 

In this paper we have considered only the par
ticular case in which the direction of the ray coin
cides with the direction of the velocity (or is op
posite to it ) . Complex radiation effects are obvi
ously also possible for other ray directions. 
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