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Weak interactions are assumed to conserve their form at high energies. Then, owing to 
the weak-interaction radiative corrections, the (3 -decay and !J. -decay vector interaction 
constants should become unequal and !J. -e + y and !J. -3e processes should appear. 
These radiative corrections are computed and, by comparison with experiment, the upper 
limit is established for the validity of the weak-interaction theory. 

IN the study of weak interactions, it is of impor­
tance in principle to ascertain whether the weak 
interactions preserve their form of four-fermion 
interactions at high energies and, if this is not so, 
at what energies the interaction begins to assume 
a form appreciably different from that which it has 
at low energies. A direct answer to this question 
can be obtained in principle from experiment, by 
measuring the energy dependence of the cross sec­
tions of different weak processes (such as !J.+ + e­
- v + ii ) . If the form of the weak interaction does 
not change with increase in energy, then the cross 
sections of such processes ought to increase with 
the energy as E2: u""' g2E2 [ E is the energy in 
the center of mass system ( c.m.s.), g is the con­
stant of weak interaction: g ~ 10-5/M2, M is the 
mass of the nucleon]. 

Another approach to the explanation of this prob­
lem is an analysis of the weak-interaction radiative 
corrections to the different effects observed at low 
energies. As is well known, the radiative effects 
in the case of four-fermion interaction diverge 
strongly, and if the weak interactions do not change 
their forms up to very high energies, then their 
contribution can be quite significant. Nor can we 
disregard a priori the possibility that the weak 
four-fermion interaction preserves its form up to 
such energies where it becomes effectively strong, 
so that the radiative corrections can, generally 
speaking, be shown to be of order unity. It is evi­
dent from dimensional considerations that a weak 
interaction becomes strong for energies E 
""' 1/{i "' 103 Bev. This means that, in the calcu­
lation of radiative corrections for weak interaction, 
the integration over the momentum of virtual par­
ticles must be carried out effectively up to momenta 
A""' 1//g. We shall assume that the weak interac­
tions preserve their form up to momenta ""' A and 
attempt to find an upper estimate for A by analy­
sis of the experimental data at hand. 

In the calculation of radiative corrections, it is 
necessary to take into account only such interac­
tions in which weakly-interacting particles partici­
pate [i.e., !J. -decay interaction and the interac­
tions ( jiv )( ii!J,) and ( ev )( iie), if they exist] . In 
taking account of interactions involving strongly­
interacting particles, the presence of a form fac­
tor makes the momenta of these particles in the 
intermediate state of order M, the mass of the 
nucleon. Consequently, the radiative corrections 
in such interactions will be less than or of the 
order of gM2 "' 10-5, i.e., very small. For an 
estimate of A it is appropriate to consider the 
following effects: the equality of the vector inter­
action constants in (3 decay and !J. decay, the 
decay !J. -e + y, and the decay !J. -3e.* 

It is known experimentally that the vector-inter­
action constants in (3 decay and !J. decay are 
equal, to a very high degree of accuracy. Theo­
retically, however, this equality can be proved 
only by neglecting radiative corrections due to 
weak interaction. The connection between the bare 
and renormalized charges is different in (3 and !J. 
decays because of the presence of the form factor 
in the strongly-interacting particles. That is, in 
(3 decay 

(1) 

and in !J. decay, 

(2) 

Here Z11J. and Z1(3 are the renormalizing factors 
for the vertex part in !J. decay and (3 decay and 
Z2 is the renormalizing factor for the Green's 
function. The factor 1/ ( 2 - Z2 ) arises because 

*The probability of the process p.- + p ... e- + p should be of 
the order of g2M4 of the probability of ordinary p. capture, inas­
much as integration over the intermediate states of strongly­
interacting particles certainly enters into the matrix element 
of this process. 
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of parity nonconservation [see reference 1, 
Eq. (2.14')]. The renormalizing factors Z2 are 
assumed to be equal for the JJ. meson, the electron, 
and the neutrino, inasmuch as we are interested in 
virtual-particle momenta which are proportional to 
A, when one can neglect all the masses. For 
strongly-interacting particles, Z2 = 1. For differ­
ent bare charges, the equality g~ = g2 can occur 
only when the ratio of the renormalizfng factors in 
(1) and (2) is equal to unity, i.e., 

(3) 

The radiative corrections entering into the ex­
pression for the renormalization of charge or am­
plitude of the decay J1. - 3e must be calculated by 
taking into account terms ~ ( gA 2 )n and discarding 
terms (gA2 )n(gm2 )q, where q > 0 (m is one of 
the external masses of the electron or muon), inas­
much as the contribution of the latter terms is very 
small ( ~ 10-13 ). Therefore, in expressions for the 
matrix elements, one can neglect the masses of all 
particles, and also all the external momenta; that 
is, one can assume that p = 0, for all external parti­
cles, so that a number of matrix elements vanish. 

In fact, for example, let us consider the first 
correction to the vertex part in J1. decay, corre­
sponding to the diagram of Fig. 1; we shall show 
that the expression for it does not have the higher 
terms ~ g ( gA 2 ) • Since the muon and the electron 
lines enter into the diagram of Fig. 1 at a single 
point, one can formally consider in the calculation 
the J1. -meson-electron field as an external field, 

JL _y__ fl 

><--~-~=< 
FIG. 1 

described by the real vector 

A~.=~~'-ldl + I6H,+'Pm(l +isH~'-' 
which does not depend on the coordinates and the 
time by virtue of the conditions PJJ. = Pe = 0 (the 
notation is the same as in reference 1 ). Then, as 
is well known, the diagram of Fig. 1 determines 
the polarization operator of the field At... and will 
be equal to (in the coordinate representation) 

M = Sp {1~. G(x, x)}, (4) 

where G ( x, y) is the Green's function of the neu­
trino in the external field At... (since we neglect the 
masses of the particles, the axial interaction gives 
the same contribution as the vector interaction, 
and for brevity we shall not write it down). Start­
ing out from the definition of the Green's function 
and the fact that the Hamiltonian of the interaction 

of the neutrino field with the field At... admits of 
the transformation group 

(5) 

it is easy to show that the Green's function of the 
neutrino in the field of the constant vector At... is 
equal to 

G(x, y) = exp {i [<P (x)- <P (y)]} G0(x, y), (6) 

where G0(x, y) is the Green's function of the free 
neutrino field. Therefore, it follows that 

G(x, x) = G0 (x, x), 

M=O. 

As is evident from the proof, it is true not 
only in first order in At... (which corresponds 

(7) 

(8) 

to the diagram of Fig. 1 ), but also in any or­
der. This means that all the diagrams with 
neutrino loops and an arbitrary number of ex­
ternal electron and muon lines are equal to 
zero provided all the external electron and muon 
lines leave pairwise from a single point. We note 
that the internal lines can include electron and 
muon lines distributed in arbitrary fashion. The 
proof remains in force in this case; one need only 
formally separate the external vector field (for 
which (6) is equal to G0, the Green's function in 
the absence of the field At...) and the quantum 
electron-muon field. It is also clear that the en­
tire proof proceeds without change if the external 
field is that of the neutrino, while the loops are 
taken over the electron-muon field. 

If the external particles are one charged par­
ticle and one neutral particle (JJ., v or e, v ), then 
it is impossible to carry out such a general proof. 
For example, let us consider the diagram of Fig. 2, 
which represents the first correction (in weak in-

FIG. 2 

teraction) to {3 decay. Just as in the preceding 
case, we can introduce the external constant 
vector 

A~.= 'P,h (1 + i5) ~ •• 
which, however, will now be complex. Therefore, 
the Lagrangian will be invariant only relative to 
the group of infinitely small transformations (anal­
ogous to the group of transformations used in ref­
erence 2 ); 

~ = [1- i ('t+<D +'teD")]~'. f = f[l + i('t+cD +'teD*)]. 

t = ( !: ) ' 't=V2(~~). (9) 
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By means of (9), it is easy to obtain an expression 
for the Green's function of the muon-neutrino field 
with accuracy up to terms linear in A A.: 

G (x, y; A~.)= (0 IT(~ (x), (ji (y)) I 0) = (0: T {[ 1- i (-c+<D (x) 

+ -c<D* (x))l ~ (x), (f (y)[ I + i (-c+<D (y) + -c<D* (y))]} I 0) 

= G0 (x, y)- i (-c+<D (x) + -c<D" (x)) G0 (x, y) 

+ iGo (x, y) (-c+<D (y) + -c<D* (y)) 

= G0 (x, y)- i {-c+ [<D (x)- <D (y)] 

+ -c [<D* (x)- <D* (y)]} G0 (x, y) (10) 

(the latter equalities follow from the fact that G0 

must be diagonal in the indices of the muon and 
neutrino). Consequently, in this case, too, 

G (x, x) = G0 (x, x) 

and the polarization operator 

Sp {j,_ -c+G (x, x)}, 

which determines the diagram of Fig. 2, also van­
ishes. Here again the result obtained remains 
valid if the internal part of the diagram of Fig. 2 
is made more complicated in arbitrary fashion 
without changing the external points. However, 
diagrams with more than two external ends (ev) 
should generally no longer be equal to zero. 

It follows directly from what has been shown 
that no corrections of first order in gA2 to the 
vertex part are present in f3 decay, inasmuch as 
they are described by a diagram similar to Fig. 2. 
In J..L decay, the corrections of first order in gA2 

arise only in the case when, in addition to the in­
teraction (jie) (ile ), one assumes the existence 
of the interactions (ev) (ile) and Ciiv) (vJ..L ). The 
corresponding diagrams for the vertex part will 
have the form of Fig. 3. Their calculation yields for 

vv. 
/ ---· -- v 

-~ II ' 

FIG. 3 

the values of the renormalization of the vertex 
part ZfJ: 

(11) 

Since, in first order of gA 2, there is no renor­
malization of the Green's functions, Z2 = 1 and 
Z1f3 = 1, therefore 

(12) 

Experimentally,3•4 (with account of radiative cor­
rections for the electromagnetic interaction5•6 ), 

the difference in the quantities g~ and iP, amounts 
to no more than 4 or 5 per cent. Hence an upper 
estimate for the cut-off limit 

As;;; 120 Bev. (13) 

is also obtained from (12). If the interactions 
Cev) (ve) and ("jiv) (vJ..L) are absent, then the re­
normalization of the charge enters only in the ap­
proximation g2A 4• * For its calculation, we note 
that in f3 decay, for all diagrams for the vertex 
part except the chain type of Fig. 2, in the approx­
imation gA2 "' 1 and, g2M4 « 1, the following 
relation holds, which is similar to Ward's theo­
rem in electrodynamics, 

- aa-r (p) I -
r(O)=Ue -a-- (! +r5)Uv·U j,_(l +aj5)Un, (14) 

p,_ P=O p 

where a= gA/gy, G (p) is the Green's function 
of the electron. 

The proof of (14) follows directly from consid­
eration of diagrams for the mass operator. For 
example, the correction "'g2 in the vertex part 
of Fig. 4 can be obtained by differentiation of 
the diagram of Fig. 5 for the mass operator. 
Chains of the type of Fig. 2 do not make a con­
tribution to the renormalization of the vertex 
part, since they do not contain the higher term 

X 
e ·----· 

p 
FIG. 4 

v . ~. 
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....... _ ...... 
p 

FIG. 5 
,...., ( gA 2 )n. Therefore, we can assume that (14) holds 
for every vertex part. By using the connection be­
tween the unrenormalized and renormalized func­
tions (see reference 1), we easily obtain 

(15) 

from (14), and, consequently, by Eq. (1), the con­
stant of f3 decay is not renormalized through weak 
interaction. 

In J..L decay in second approximation in gA 2, a 
relation similar to Ward's theorem also holds for 
the diagrams of Fig. 6: 

II\ ,:'u pve 
'

1 

II ,' \ II 

,'p \ 

P ----· -i-<:::;>--,-
.JI e 

FIG. 6 

*Renormalization of the charge in first approximation in 
gN will also be absent if the signs of the interaction con­
stants of (ev)(iie) and (jiv)(iip.) are opposite. Such a situa­
tion, however, contradicts the original assumption of Gell­
Mann and Feynman7 to the effect that all weak interactions 
arise as the products of the currents j r..i~· ir.. = (ev) + (jiv) + ... 
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- ao-1 (p) I , - ao-1 (p) i 
f(O)=Up. ~8p~[ (I ;j)Ue·U"~iJ~j (I +15)u., 

), P=O P~c 'P=O 
(16) 

(in higher orders in gA2, the relation (16) will ap­
ply only for diagrams in which two external lines 
emerge from a single point, or diagrams which 
consist of two separate pieces which have the same 
general point). From (16) it is easy to demonstrate 
the relation 

(15') 

whence it follows, in correspondence with (1), that 
the contribution of the diagrams of Fig. 6 to the 
renormalization is reduced to the contribution of 
the mass operator (all discussions of course are 
valid only with accuracy up to terms ,...., g2 A 4 ). In 
addition to the diagrams of Fig. 6, the diagram of 
Fig. 7 enters into the vertex part; this diagram 

VN 
11 ," ..... __ .. ' ' ..... _ .... ', 

,..- J} 71 ',~ 

FIG. 7 

also determines the renormalization of charge in 
the approximation g2A4 [in the absence of the in­
teractions (jiv) (v!J.) and (ev) (ve)]. Calculation 
of this diagram yields 

(17) 

so that 

g~lg~ =~ 1-g2N/n4• (18) 

From (18) we obtain for the upper estimate of the 
cut-off limit 

AG;:400 Bev (19) 

We do not consider the decay JJ.- e + y. It is 
well known (with great accuracy) from experi­
ment that this process is absent. Therefore, we 
obtain a strong limitation on the quantity A, if 
we assume the existence of the interactions 
(jiv) (v!J.) and (ev) (ve). In this case the ampli­
tude of the decay JJ.- e + y is determined by dia­
grams of Fig. 8. Diagrams of the type Fig. 9 do 
not make a contribution to the real decay JJ. - e 
+ y, and are eliminated by the renormalization of 
the wave functions of the muon and the electron 
[because of the simultaneous presence of three 
types of interaction (ev) (ve ), (Jiv) (v!J. ), and 
(Jiv) (ve ), the wave function of the electron in 
the renormalization is expressed both in terms 
of the wave function of the electron and in terms 
of the wave function of the muon ] . The probabil-

FIG. 8 

FIG. 9 

ity of the decay JJ.- e + y, computed for the dia­
grams of Fig. 8, is shown to be equal to (the cal­
culations are carried out with logarithmic accu­
racy) 

' - 8 2 2 \4 /1 A" )z s 
We+y - 9 (2ro)s e g J \ n }Y !1. (20) 

and the ratio of it to the probability of the decay 
JJ.-e+v+v 

(21) 

amounts to 

(22) 

According to the experimental data of references 
8 and 9, we+ylw+v+v < 2 x 10- 6• Substituting this 
value in (22), we get 

AG;: 50 Bev (23) 

The decay JJ.±- e± + e+ + e- in the lowest approx­
imation in gA 2 is described by the diagrams of 
Fig. 10, and can occur in the absence of the inter­
actions (jiv) (vJJ.) and (ev) (lie). The ratio of 
the probability of the decay JJ. - 3e to the proba­
bility of ordinary JJ. decay will be of the order of 
g4A8• An estimate of the cut-off value of A, ob­
tained from the experimental value wJJ.-ae/wiJ. 
~ 10-6 , is close to the estimate given by Eq. (19). 

FIG. 10 

All the foregoing estimates of the quantity A 
were carried out on the basis of an analysis of 
the first approximations of perturbation theory. 
The values obtained for A justified such a method 
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of estimate, inasmuch as for A ~ 100 Bev the 
contribution of succeeding approximations should 
be small. The result of the calculation naturally 
depends on the concrete form of the cut-off. There­
fore, the estimates used cannot be taken too liter­
ally: the inaccuracy in A can reach the order of 
A itself. 

We note that the estimate (19) [but not (13)], 
which is based on the coincidence of the constants 
of {3 decay and J.l decay, holds even when there 
are two different neutrinos, namely, electron 
and muon. Therefore, making more precise (theo­
retically and experimentally ) the coincidence of 
these constants should allow us to eliminate the 
hypothesis of a heavy vector meson (of mass ~ 
100M ) 10.* 

The author expresses his gratitude to I. Ya. 
Pomeranchuk and K. A. Ter-Martirosyan for use­
ful discussions. 

*In reference 10 a value of -30 M was used for the value 
of the mass of the heavy vector meson. Actually, as has been 
noted by L. B. Okun', it ought to be "'V4TTe2/g2 - 100M. 
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