
SOVIET PHYSICS JETP VOLUME 11, NUMBER 5 NOVEMBER, 1960 

ON THE AMOUNT OF ACCELERATED PARTICLES IN AN IONIZED GAS UNDER 

VARIOUS ACCELERATING MECHANISMS 

A. V. GUREVICH 

P. N. Lebedev Physics Institute, Academy of Science, U.S.S.R. 

Submitted to JETP editor December 21, 1959 

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1597-1607 (May, 1960) 

The kinetic equation is solved for a system of particles interacting according to Coulomb-law 
conditions where the presence of the accelerating mechanism makes the distribution function 
non-stationary in the high-velocity range, i.e., when the accelerating mechanism leads to 
continuous acceleration of particles whose energy is greater than the injection energy. The 
value of the particle flux is determined. 

l. Great attention is being paid of late, in con­
nection with investigations of the origin of cos­
mic rays and corpuscular radiation from the 
sun, to the analysis of various mechanisms of 
acceleration in an ionized gas. Under considera­
tion, for example, is Fermi's statistical mech­
anism of acceleration, by which the ion energy 
increases through collisions with clouds of 
charged particles. In this case, if the free path 
L between two collisions of an ion with the 
clouds is constant (independent of the ion en­
ergy € ), and if the ion acquires during each 
impact an average energy ( 2/3) Mv~ (where 
M is the ion mass and Vc the average cloud 
velocity), then the energy transferred to the 
ion by the accelerating mechanism over a time 
D. t is 

Within the same time, the particle loses, by in­
teraction with other ions of the plasma, an energy 
D. € _ = ( € - 3kT/2) v ( €) D. t, where v ( €) is the 
collision frequency. As is well known, the col­
lision frequency of the particles interaction in 
Coulomb-law diminishes rapidly with increasing 
energy, v ( €) = v0 (kT I €)312, where 

'I = v(kT) = 4nNe4 (kTD) 
o (kT)'I• M'f, In ---eo (1) 

is the collision frequency of a particle of average 
(thermal) energy ( e is the ion charge, N the ion 
density, and D the De bye radius ) . Thus, the 
change in ion energy, due to the Fermi statistical 
acceleration mechanism, is given by 

from which we see directly that only when 

e < ~>tn = 3v0L (kT)'1'j2 V2v2c M'!. 

will the ion energy tend to a stationary value. 
When € > Ein it increases continuously with time, 
and in collisions with other ions the particle loses 
only a small part of the energy it acquires. from the 
clouds. Ein is usually called the injection energy. 
It is clear that when the injection energy is close 
to the average thermal ion energy ( Ein "'kT ), all 
particles are immediately accelerated. If Ein 
» kT, on the other hand, only a small part of the 
particles become accelerated, those with suf­
ficiently large energies € > Ein » kT. 

When €in » kT, the acceleration mechanism 
is logically called "weak." We shall consider 
here only weak accelerating mechanisms. Since 
a weak acceleration mechanism transfers to the 
ions, over the mean free time 1/ v0, an energy 
which is small compared with the thermal energy 
kT, the action of a weak acceleration mechanism 
cannot cause the distribution function to deviate 
considerably from equilibrium ( Maxwellian ) . In 
the range of high energies, however, the mean 
free time is large, and the effect of a weak ac­
celeration mechanism can be substantial. Further­
more, when € > Ein the particle energy increases 
with time, so that the particle energy distribution 
in this region is essentially not in equilibrium. 

Collisl.ons cause the energy of certain particles 
to increase from the main equilibrium value to 
the injection value. The particles then leave ( es­
cape ) the main region and are accelerated. The 
order of magnitude of the number of particles es­
caping per unit time D. t is, naturally, 

~- = ~ Mvz VZsJM - v0 (. e- ~kr) (.':!__)'/. 
dt 3 c L 2 s ' 

(2) 
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where N ( €in) is the number of particles with 
energies ranging from €in- kT to €in· It appears 
natural at first glance to assume, in estimating the 
value of N ( €in ), that the distribution function is 
Maxwellian up to € = €in· We would obtain then 

t!N ~vMN0 exp {- E;n!kT}. (3a) 

We shall see below that the acceleration mechanism 
changes the character of the velocity distribution 
in the region € - Ein so much that expressions 
of type (3) are utterly inapplicable for estimates 
of the number of escaping particles. 

At the same time, the number of escaping 
particles, and consequently the number of ac­
celerated particles, is one of the basic charac­
teristics of the acceleration mechanism. There­
fore the question of the flux of escaping particles 
and its dependence on the parameters that char­
acterize the acceleration mechanism, the plasma, 
and the accelerating particles themselves is of 
considerable interest. 

The present paper is devoted to a solution of 
the corresponding problem.* In Sec. 2 we de­
velop a method for finding a weakly-nonstation­
ary solution of the kinetic equation. A general 
expression is obtained for the flux of escaping 
particles. This solution is analyzed in Sec. 3 
for ions accelerated in a plasma by the statistical 
Fermi acceleration mechanism. 

2. We consider first, for the sake of simplicity, 
a system of identical particles, interacting in ac­
cordance with the Coulomb law and subject to a 
weak statistical acceleration mechanism. The 
equation for the velocity distribution function of 
these particles has the form 

ar 1 a {( 1 2 ) at } ---- - + u ~(u) - + f = 0. a-r u2 au u au (4) 

Allowance is made here for the fact that the sta­
tistical acceleration mechanism does not have a 
preferred direction in velocity space; the distribu­
tion function can therefore depend only on the 
modulus of the velocity v and on the time 
t[f =f(v, t)]. In addition, we use in (4) the di­
mensionless variables 

u = vJVkTJM, (5) 

where v0 is the collision frequency, determined 

*An analysis of the question of the number of accelerating 
ions in a plasma in a case of the Fermi acceleration mecha­
nism is treated by Parker.' He did not obtain, however, cor­
rect expressions for the flux of the escaping particles. We note 
also that Parker disregarded the interaction with electrons, 
which fundamentally affects the flux of escaping ions (see 
Sec. 3 of the present paper). 

by Eq. (1), while T is the system temperature 
( T is considered henceforth constant in time; this 
is meaningful only in the case of a weak accelera­
tion mechanism).* Finally, the function a(u) 
describes the effect of the acceleration mechanism 
on the particles. Thus, if the mean free path L of 
the particle between two collisions with the clouds 
is independent of its velocity, then 

a(u) = ~0 u, (6) 

The parameter a0 is very simply connected with 
the injection energy €in• a 0 = kT /..f2 Eini in the 
case of a weak acceleration mechanism, a0 is 
always much less than unity. 

STATIONARY SOLUTION 

Solving Eq. (4) under stationary conditions 
( of/87' = 0 ), we have 

(llu + u2~ (u)) at/au+ f = -S0 , (7) 

where S0 is the total flux of the particles through 
the surface u = const in velocity space.t Hence 

f =Co exp {-~~:~~a (u)}- S 0 , (8) 
' (I 

where the constant C0 is determined by the nor­
malization condition 

The flux So can differ from zero in the entire 
velocity space only if a source is located at the 
origin. 

In the absence of such a source we have for 
a (u) = a 0u [see Eq. (6)) 

(8a) 

f = C exp {- ~ ~u I. (9) 
0 J 1 + C/.,,u' J 

0 

The distribution function (9) tends to a constant 
value as u -- oo: f ( oo) = C0 exp (- rr/ 4.,;-c;;). It 
cannot satisfy, naturally, the normalization con­
dition (8a). ' This means that there exists no 
stationary distribution in this case, as should be 

*We note that (4) holds, strictly speaking, only for particles 
much faster than thermal (u2 » 1). In the vicinity' of u - 1, the 
terms that describe collisions between particles should be 
written down in somewhat more complicated form (see refer­
ence 2). It is easy to verify, however, that this is of no im­
portance to us, for in the case of an acceleration mechanism 
only the region of high velocities is of importance. 

tEquation (4) can be written in the form a£/aT + div S = 0, 
from which it is clear that S = fSdu (integration over the re­
gion u = const) is actually the particle flux in velocity space. 
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(see Sec. 1). We note that if a (u) = a 0uA, then 
no normalizable stationary distribution exists 
for A. < -1, and the particles do not escape in 
this case. A similar conclusion is reached by 
analysis of Eq. (2), where the acceleration of 
particles for t. E + ~ EA./2 is possible only if 
A.>-1. 

We note in conclusion that in the general case 
when the equation for the function f has the form 

at - -1 ~(A (u) 8_L -- B (u) f) = 0 (10) 
iJ': u'!. du , du ' 

the stationary solution (with flux s0 ) is given by 

_ f _ ( B (u) ) (! ~ ff B (I) ) 
S 0 exp \ .l A (u) du f j A (v) exp l j A (t) dt I . 

u ~~ 0 I 

(11) 

STEADY-STATE QUASI-STATIONARY SOLUTION 

We have noted earlier that only the particles 
whose energy exceeds the injection energy Ein 
= kT //2 a 0 are accelerated. The number of 
such particles in the case of a weak acceleration 
mechanism, i.e., at sufficiently small a 0, is 
very small. The state of the main mass of the 
particles, whose energy is less than the injection 
energy Ein• is almost stationary. In fact, were 
it not for the escape ( a 0 - 0, that is, Ein- 00), 

this would be in general a stationary state [see 
Eq. (9)]. Since a 0 ~ 0, the energy of certain 
particles increases to Ein = kT/v'2 ao, and they 
leave the main region. At sufficiently small a 0, 

this flux of escaping particles is naturally very 
weak [see Eq. (3)]. Therefore, although the main 
state does change with time, its change is very 
slow, quasi -stationary. The flux of particles 
from the main region to the acceleration region 
also changes slowly.* 

It was also indicated in Sec. 1 that the influence 
of a weak acceleration mechanism on particles 
with energies close to thermal is insignificant. 
Therefore, in solving Eq. (4) for the case of a 
weak Fermi acceleration mechanism (6), it is 

*The time variation of the distribution function in the case 
of the weak acceleration mechanism considered here is so to 
speak analogous to the leakage of water from a large reservoir 
through a very small hole. It is clear that all the water will 
leak out after an infinite time, i.e., there is no perfectly 
stationary state, but the level of the water in the reservoir 
changes very slowly. The escape flux itself soon reaches a 
definite value, which can subsequently change only slowly 
(quasi-stationarily) with a change in the overall level of water 
in the reservoir. 

convenient to single out first the region (I) in 
which the velocities are u ~ 1 ( 0 ~ u ~ u1 ), and 
where the effect of the acceleration mechanism 
can be neglected in first approximation. In re­
gion I, Eq. (4) becomes 

at!- _J_~ (__J__ ari --'- r·r) - 0 a-: u2 au u au i - • 
(12) 

The boundary u1 is subject to the condition that 
the acceleration mechanism be weak when u ~ u1, 

i.e., a0u~ « 1/u1• On the other hand, it is nec­
essary that the number of particles which are 
not in the mean region be negligibly small, i.e., 
uf exp (- u~/2) « 1. At sufficiently small a 0 

(if a 0- 3/ 4 exp{-1/2·-v'c¥o}« 1), both conditions 
can be satisfied. 

It must also be considered that escape causes 
the total number of particles in the main region I 
to be variable, i.e., although the flux S = u- 1afi/au 
+ fi vanishes on the boundary u = 0 (there are no 
sources), the flux of particles through the boundary 
u = u1 is different from zero, S = -S0 • At suf­
ficiently small a 0, as indicated above, this flux 
should be weak ( S0 « No ) , so that the distribu-
tion function in the main region should be close to 
stationary. As a result, it is natural to seek the 
solution of Eq. (4) by the method of successive ap­
proximations' fi = ff + f~ + ... ' neglecting in first 
approximation the time variation of fi, i.e., as­
suming it to be quasi-stationary. We then obtain 
instead of (4) the following system of equations for 
ff, f!, ... 

1 a ( 1 at~ ) at! -- -----=---1- I =-
u2 au u au i f 2 a-: ' ... 

(13) 

From the first equation of (13) we find that, in 
first approximation, the distribution function in the 
main region is Maxwellian: 

(14) 

as should be. The con~tant ci is determined from 
the normalization condition 

N = ~· f!u 2 du = C1 ~· u2 exp {- u2/2} du, 
0 0 

where N is the total number of particles with 
velocity u ~ u1.:t: Since we have assumed that u1 
is sufficiently large, so thatterms of order 
uf exp ( -u~/2) can be neglected, we get 

*Since the system under consideration is supposed to be 
homogeneous in coordinate space, N can be taken to mean 
both the number of particles in the medium and their density 
in coordinate space. 
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Therefore, considering that aou4 « 1, we get 
(14a) cii = N!"2i. Thus, the steady-state solution in 

Here No is the total number of particles in the 
system, and s0 is the flux of particles escaping 
from the main region I through the surface u = u1. 

In the next higher approximation we obtain 

1 a f 1 iJf~ 1l V2 { u2 l ----~-- + f f = - S 0 - exp - ?(. (15) 
u2 au l u au 2 7t - J 

Let us integrate this equation, recalling that on the 
boundary u = 0 the flux S = u-1afl/au + fl van­
ishes. We then have 

~ /2~ { v2} S = - S0 V --;- ~ v2 exp - y dv, 
0 

i.e., the flux S increases (in absolute value) with 
increasing u from 0 when u = 0 to So when 
u = u1, as should be. It is interesting that when 
u > 1 the flux rapidly approaches S0 and remains 
practically unchanged with increasing u. The flux 
is thus independent of the choice of the boundary 
u1 (provided u1 » 1 ) . 

Integrating further Eq. (15), we readily obtain 
also the function £I 

I ' " ~ /2 u• '· f; = Cze-u'/2 -l *So\ t2e-t'/~ dt + V --;;--So 3 e-u /2.(16) 
0 

The constant C2 is determined here by the nor-
u 

malization condition J f~2du = 0. It is important 

to note that at sufficiently large u » 1 the func­
tion f~ tends to a constant value, independent of 
u: fl - - So. In parti?ular,. on the bounda{y of 
the region under cons1deratwn we have f2 ( u1 ) 
=-So. 

In region II ( u1 ::; u ::; u2) the influence of the 
acceleration mechanism must already be accounted 
for. It is important, however, that through this re­
gion passes a constant particle flux -So, which 
is independent of u (as shown above, the flux is 
produced in the region u -1 and is practically in­
dependent of u when u » 1 ). Solving Eq. (4) in 
region II by the same method as in region I, we 
find that the distribution function in region II is of 
the form [cf. Eq. (8)] 

{ ~~ u du } S fi! = en exp - ----- - 0· 
. 1 + a0u4 

0 

(17) 

The constant cii is determined from the condi­
tion of continuity of the distribution function on 

r fii( > · the boundary f ( u1 ) = u1 , 1.e . , 

-v2 f U~ \ I! { ~u u du } S - N exp 1--2 J- S0 = C exp - 1 , a 11.- - o· 
" 0 T 0 (18) 

region II is 

f!I (u) = v~ N exp {-L ~ ~:u•} -So. (17a) 
0 

It is important here that as u increases fii (u) 
tends to a constant value independent of u, 

~ /2 { r udu } f!I ( oo) = V --;- N exp - J 1 + aou• 
0 

-So= V~ N exp {-;.--{:~}-So. (19) 

We have thus determined the distribution func­
tions in regions I and II. In the case of a weak 
flux S0 « N, the resulting expression (14)-(17) 
is almost stationary, and changes with time only 
to the extent that the number of particles changes 

T 

in the main region, N = N0 - J S0dT. The only un­
o 

known in (14)-(17) is the flux S0, which can be de­
termined from the normalization condition. In 
fact, the total number of particles passing from 
region I to region II during the time T is 
T 

J S0dT. The total change in the normalization in­
o 
tegral of the distribution function over the entire 
region u > u1 should obviously be equal to this 
quantity, 

00 ~ 

1:1.N =~ u2 [f(u,-r)-f(u,O)]du=~S0 d-r, (20) 
u, 0 

where f ( u, 0) is the initial (Maxwellian) dis­
tribution function. From this we can obtain the 
flux S0• We first consider that the quasi-sta­
tionary distribution (1 7a) is valid up to the 
boundary u = u2. The boundary itself, naturally, 
moves with increasing T towards higher values 
of u at which the quasi-stationary distribution 

' . II function fii becomes a constant quantity, f ( 00) 

[see Eq. (19)]. Consequently, at sufficiently 
large T, i.e., at sufficiently large u2, the num­
ber of particles in the stationary region II alone 
( ~ NII) is given by 

u2 Us 

f:1..NII = ~ fii u2 du 'd; ~ fii ( oo) u2 du = fii ( oo) u23/3. (20a) 

We now determine the time variation of the 
boundary of the steady-state quasi-stationary dis­
tribution u2. In the region of large u ( u > v' Ein/kT 
- 1/~) the collisions are insignificant and the 
distribution function changes only because of the 
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effect of the acceleration mechanism on the parti­
cle. Equation (4) obviously assumes in this region 
the form 

quasi-stationary distribution established after 
a time 

(21) is* 

The boundary u2 of the quasi-stationary region 
obviously changes with time like the average ve-

00 

locity ii = 1/ .6. N J u3f ( u, T) du. From (21) we 
u1 

obtain for ii the equation du/ dT = 3a0 or ii 
= Uo + 3a0r. Consequently, u2 also increases 
with time in proportion to T: 

where u20 ~..j Ein/kT ~ 1/~. Substituting now 
(22~ in (20a), we find that for sufficiently large 
T ( T » O!o3/2 ) 

!lNII = f 11 ( oo) u~j3 = 90t~'C3f 11 ( oo ). 

(22) 

We now assume that the number of particles in 
the quasi -stationary region II ( u1 ::::: u ::::: u2) in 
no case exceeds .6.N, the total number of parti­
cles in the entire region u =:: u1, i.e., 

" 
!lNII = 90t~'C3fii (oo) < !lN = ~ Sod-r. 

0 

Since the steady-state flux So is almost station­
ary (it can only decrease slowly with increasing 
T), it follows from this inequality that 

fll (oo) <So (30tJ'-rf2, 

where So is the average value of So. It is clear 
therefore that the steady-state value is fii ( 00 ) 

= 0 (time to establish steady state .6.T ~ a 0312 ): 

- co 

fll(oo)=V~Nexp{-} 1 ~d:ou•}-S0 =0. 
Consequently 

... /2 { r u du } , /2 { " } S 0 = V ---; N exp - J 1 + aou• = V ---; N exp - 4 V~ . 
0 

The ion density N is determined here by the 
equation 

dN/dt = - S 0v0 = - v0N exp {- rt/4 V~}, 

(23) 

in the solution of which, naturally, it is necessary to 
take into account the fact that v0 and a 0 depend 
on N. 

Thus, in the system considered of identical 
particles interacting in accordance with a 
Coulomb law and under the influence of a weak 
( a0 « 1) Fermi acceleration mechanism, the 

u 

f (u, 1:) = V-~ N (-r) [ exp {- ~ 
0 

co 

- exp {- ~ 1 ~ ~:u•} J . 
0 

(25) 

The condition for the existence of a quasi-stationary 
distribution (25) is written here in the form 80.6. T 

« N, or 

(26) 

This condition is always satisfied at sufficiently 
small a 0 ( a 0 « 10-2 ). It is easy to see that the 
other requirements stipulated above during the so­
lution process are also satisfied if conditions (24) 
and (26) are satisfied. 

It is interesting to note that the distribution 
function (25) differs from the stationary distribu­
tion function (9) only by a constant (second term 
in the square brackets), which determines pre­
cisely the value of the flux of escaping particles. 
The distribution function (25), unlike the station­
ary distribution function (9), vanishes as u - oo 

FLUX OF ESCAPING PARTICLES 

The steady-state flux of the escaping particles, 
as is clear from (23), is 

dN jdt = V2/rr Nv0 exp {- rt/4 V(Xo}. (23a) 

Comparing this exact expression for the first flux 
with the "elementary" formula (3), obtained under 
the assumption that the distribution function is 
Maxwellian up to the injection energy, 

dNjdt~Nvexp{-E;n/kT} = Nvexp{-I/Jf20t0 }, (3b) 

we see that the difference between them is very 
great. It is important that this difference is not 
only quantitative but also qualitative (a different 
dependence on the parameter a0 which charac­
terizes the acceleration mechanism). The reason 
is that the region in which the acceleration mech-

*Strictly speaking, the distribution (14)-(16) is valid in 
region I, but in considering the distribution function itself 
(and not the flux) we can neglect the difference between the 
distribution (14)-(16) and (25). It must also be noted that con­
dition (24) indicates only the time required to establish quasi­
stationary distribution (25), up to injection energies u - o:;Y,. 
The time to establish the distribution (25) is accordingly 
greater at higher energies: !lr- u3 » 0:., -'!,. 
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anism begins to influence substantially the form 
of the distribution function is much closer to the 
injection energy, and consequently the distribution 
function at € ~ Ein is much different from Max­
wellian. In fact, the region in which the substan­
tial deviation of the distribution function from 
Maxwellian begins is determined, as is clear from 
(9) and (25), by the condition a 0u4 ~ 1 or 
E ~ Ein/.fao « Ein· From a comparison of (3a) 
with the exact formula (23a) it is seen that actually 
the elementary formula is never applicable. 

The solution obtained for the special form of 
acceleration mechanism (6) can be readily ex­
tended to cover more general cases. In particular, 
if the equation for the distribution function has the 
general form (10), then the expression for the 
steady-state flux (at a weak acceleration mech­
anism ) has the form 

S 0 = V2Jr. N [r :~u) exp { ~~ i~i 
0 0 

(27) 

In particular, if B ( u) = 1, then 

00 

-./'J J \ du \ 
So = V ~ N exp ~- .) A (u) I . (27a) 

0 

When A ( u) has a value 1/u + a 0u3, formula 
(27a) naturally coincides with (23). The distribu­
tion function in this general case is 

-. /2 ' f t B (u) } [ C dv f (u, ;:) = V -; N (-r) exp l- .\A (u) du I -.\A (v) 
0 0 

It is seen from (27) that one can distinguish two 
essentially different cases in which the flux of es­
caping particles is different from zero: either 
A (u) increases much faster than B (u) as u- oo 

(as in the example considered above), or the func­
tion B ( u) vanishes at a certain uc and subse­
quently becomes negative.* In the latter case, for 
a weak acceleration mechanism, Uc is always 
much greater than unity. It is consequently pos­
sible to carry out the integration in (27) (by the 
saddle-point method). We then find that 

*This case is usually characteristic of guided acceleration 
mechanisms (for example, acceleration by means of an elec­
tric field, acceleration of particles in a plasma contained be­
tween two contracting walls, etc.). It should be noted that al­
though one cannot assume in the analysis of guided accelera­
tion mechanisms, as was done above, that the distribution 
function depends only on the absolute value of the velocity, 
nevertheless expressions of the type (27b) for the flux of the 
escaping particles hold in this case, too. 

1 ( dA dB)'/, f u{ B (u) } b) 
S 0 = --;- N B du- A du exp ~- · J A (u) du , (27 

u=-ttc o 

where the velocity uc is determined by the condition 
B (uc) = 0. 

3. A weak Fermi acceleration mechanism in 
a plasma changes significantly only the velocity 
distribution of the ions. The acceleration mech­
anism hardly affects the electron distribution 
function, which can therefore be considered Max­
wellian. The equation for the ion distribution func­
tion, with allowance for interactions between the 
ions and with the electrons, has the form 

(29) 

Here u = v /JkT /M and T = Voi t, where T is the 
plasma temperature and v0i is the collision fre­
quency for the ions (1), assuming single collisions 
for simplicity. The terms containing y describe 
the interaction between the ions and the electrons. 
Here l = M/m ( m is the electron mass) and 

X 

2 '. ) G(x)=-y; (~e-z'dz-xe-x' .. (29a) 
0 

At small x « 1 we have G ( x) = 4x3 /3..[;; at 
large x » 1 we have G(x) = 1-2xe-x2;..[;. 

Values of the function G ( x) for x ~ 1 are given, 
for example, in reference 2. Finally, the term 
with a(u), as above, describes the effect of the 
acceleration mechanism on the ions 

All the quantities here are the same as in Sec. 2, 
except that a somewhat more general expression 
than (6) is used for a ( u), making it possible to 
describe not only the case of a constant ion mean 
free path between two collisions with clouds, but 
also the case of an arbitrary power-law depend­
ence of L on the ion velocity v: L (v) = Q0v1-A. 

Using (2"3) and (27) for the steady-state flux of 
the escaping ions, we find that in our case 

- 00 

dN - v S - -./.3._ Nv [l" u du 
dt.- 0 0 - V n ° ~ 1 + r2G (uJV2y) + a0t/+3 

{. f -t [1 __)_ ·r2G (tif2rll }J~ -l 
X exp .\ ,r ~c+ · 

0 1+T2G(//r 2T)+aot 3 

Considering that the principal role is played in 
this expression for dN/ dt by the exponential 
term, we can, integrating by parts, convert this 
term to 

(31) 



1156 A. V. GUREVICH 

aN =-. FI_ Nv (l _,_ 2G) exn l_r u du (1 + 12~ (u/V2rl) 1., 
dt v 1C 0 ' "( • I ~ 1 + j 2G (uFV2y) + aoui.+a I 

0 (32) 

where G is a certain average value of the function 
G (u/y/2 ); we shall show below that G is always 
equal to unity in the cases of interest to us. 

Our principal problem is to analyze the form 
of the function 

00 -

J( a ),)=( udu(i+r•GrurV;:rl 
"(, 0 ' Ji+r2G(u/V;:y)+a0t/+3 

" 00 

= 2,.,2 (' x dx (1 + j2G (x)) 
I j 1 + r•G (x) + 2(}.+3)/2aol+axl.+a . 

0 

(33) 

We note first that when A ::::; - 1 the function 
J (y, a 0, A) becomes infinite. This means that 
the flux of escaping ions is zero when A ::s - 1. 
In other words, in this case the distribution func­
tion is stationary, as it should be (see Sec. 2). We 
shall assume y 2 = M/m always to be a very large 
quantity. It is easy to see that we can consequently 
always neglect unity compared with the other terms 
in (33),* i.e., we can rewrite (33) as 

00 

J _ 2 2 \' xG (x) dx (33 ) 
- "( .\ G (x) + 2<1.+3l/2ao/'+lxi+a a 

0 . 

It is now easy to obtain the essential limiting values 
of the function J, namely, when 
P = 2 <A + 3>/2 aoyA + 1 » 1, 

00 

1 G (x) 
q("A) = j xi.H dx, 

(34) 

where A < 2. The numerical values of q (A) are 
listed in the table. In the second limiting case, 
when p « 1, 

The values of the function r (A) are also listed in 
the table, from which it is seen that the functions 

), q (I.) r (I.) 

-1.0 00 00 

-o:5 2.04 2.07 
0 1.13 1.21 
0,5 0.93 0.92 
1.0 1.0 0. 78 

*In other words, the basic decisive influence on the flux 
of the escaping ions is exerted by their interaction with the 
electrons and not with each other. This fact agrees with the 
well-known circumstance that the main energy losses of fast 
ions in a plasma are due to their interactions with electrons, 
and not with ions. 

q (A) and r (A) differ little from each other. As 
A changes from -0.5 to 1, these functions change 
very little, and remain in fact close to unity. 

It must be emphasized that only the first of the 
foregoing limiting cases is of prime significance. 
In fact, as can be seen from (32), the flux is pro­
portional to e -J, and when p ~ 1 the function J 
is greater than y2, where y2 = M/m is always a 
very large quantity, on the order of 103 to 105 • 

Consequently, only the first limiting case can be 
of practical interest, when p » 1 and the flux 80 

assumes sensible values at sufficiently large p. 
It is also easy to verify that G, the mean value 
of G ( x) in the integral (32), is always close to 
unity.* Therefore, when calculating the flux of 
the escaping ions, we can always use the simple 
expression (34): 

(35) 

(35a) 

It is seen therefore that if the cloud velocity v~ 
is independent of the plasma parameters, the flux 
diminishes exponentially with increasing plasma 
density and increases with increasing plasma 
temperature. 

It is also interesting that the flux of the es­
caping ions increases rapidly with increasing ion 
mass. It must be emphasized here, to be sure, 
that only singly-charged ions are considered. 
The flux of Z-fold ions is given by the same 
formulas, (35) and (35a), but the exponential term 
must be multiplied by Z2Ne/Ni, and the term 
preceding the exponential must be multiplied by 
Ne/Z 2Ni. t It is clear therefore that the ion flux 
diminishes rapidly with increasing ion charge: 
the exponential term is proportional to Z2 (if 
the number of multiply-charged ions is relative­
ly small, so that Ne ~ Ni ), or even to Z3 (if 
all the ions are Z-fold ionized so that Ne = ZNi ). 

*In fact, as is clear from (31), G is determined by that re­
gion of the values of G(x), in which the quantity 

X 

y•G (x) ~+a exp {212 ~ xG (x) I (G (x) + pxi.+a):dx} 
G (x) + px · 0 

has a maximum. This quantity always has a maximum at large 
x (xmax » 1). Therefore G "' G(xmax) "' 1 [the function G(x) is 
close to unity for large x; see (29a)]. 

tWe note also that the frequency of collisions between 
ions, 1101 , is proportional to Z' and the parameter 7' "' tv01 

changes accordingly. 
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