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The problem of the rotation of the spin is solved for a relativistic particle that has a mag
netic dipole moment and moves in an external electromagnetic field. The angular velocity of 
the rotation of the spin is determined in the rest system of the particle, which is rigidly fixed 
to its trajectory (analog of the Frenet axis system for a four-dimensional curve). The re
sults obtained are significant for experiments made to measure the magnetic and electric 
moments of elementary particles. 

LET us consider the problem of the change of the 
polarization of a particle with arbitrary spin s 
and magnetic dipole moment /.L = g ( eti./2mc) s 
under the action of an external electromagnetic 
field. It is assumed that the field is a macro
scopic field, i.e., that the motion of the particle 
in the field obeys the laws of classical mechan
ics:1 

(1) 

The spin operator is uniquely defined only with 
respect to spatial rotations in the rest system, 
and various relativistic generalizations of this 
operator are possible. We shall use the spin 
pseudovector s/.L =-! iE/.LvA.pMvA.Pp, 2 which co
incides with the nonrelativistic spin operator in 
the rest system of the particle. For the average 
value of ~/.L one can obtain the equation (cf. ref
erence 3) 

dsl'-!d-t: = (e!mc) [fgF!J.vSv + (f g-1) ui'-F•!luo:s!l], (2) 

where g is the gyromagnetic ratio and u/.L is the 
four-velocity. The polarization is essentially a 
three-dimensional vector defined in the rest sys
tem of the particle. Therefore after solving the 
equation (2) one must translate the four-vector 
s/.L into the rest system. The direct solution of 
the equation (2) is cumbersome even in the sim
plest case of a uniform magnetic field. Therefore 
we shall find the angular velocity of the rotation 
of the spin directly in the rest system. 

Let us introduce four axes 17a (a = 0, 1, 2, 3) 
rigidly connected with the trajectory (which is re
garded as a curve in the four-dimensional Min
kowski space). The four unit vectors 17a are the 
four-dimensional analog of the Frenet axes. They 
obey the equations 

goo= -1, 

We shall construct the vectors 17a in the fol
lowing way. Suppose the vectors uw uw liw 'U'/.L 
are linearly independent (the dot denotes dif
ferentiation with respect to the proper time T ). 

Then we set 

'Yl~ = ~ Co:r>d{lu~'-jd-r:il, 
!l=O 

where the coefficients Caf3 are found from the 
conditions of orthogonality and normalization. It 
follows from this that Ka{3 ~ 0 only for 
{3 =a ± 1, i.e., the curvature tensor has the form 

(the other components of the tensor Ka{3 are all 
zero). For the unit vectors 17 ff we get the fol
lowing expressions: 

(4) 

where 

Substituting Eq. (5) in Eq. (3), we find the connec
tion of Ci with the curvatures Ka{3= 

The spin four-vecto:r;- s/.L can be expressed in 
terms of the vectors 11h ( i = 1, 2, 3 ), since 
s/.Lu/.L = 0. Let 
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Sp. = ~ Ciilj~J.; 
i=l 

it follows from Eq. (2) that 

dajd-: = rnxa], 

where 

(7) 

and n is the vector of the angular velocity of the 
rotation of the polarization u in the rest system 
we have chosen (the system of axes 11i ). From 
Eqs. (4) and (6) it is clear that kij and 11~ can 
be expressed in terms of the four-velocity uJJ. 
and its derivatives, which are determined by the 
field F JJ.V" Therefore to find 0 we need first to 
determine the trajectory of the particle, i.e., to 
solve (1). 

Let us consider the case in which E = 0 but 
H is an arbitrary function of the coordinates (and 
the time). Using the equations of motion (1), we 
can obtain the following expression for the com
ponents of n : 
Q1 = u0 ~-· [ecos fl +(I+ esin fl) OJ, 

Q2 = --;. gQL~-1u0 e tg fl, 

Q={O, 0, H-g-l)QLVJ_!_u2 cos 2 fl]. 

The electron then moves in a spiral with a con
stant pitch angle 8 (Uz = U sin 8, if the Z axis 
is the axis of the spiral). It follows from Eq. (9) 
that the vectors 11i are in fixed positions with re
spect to the accompanying Frenet vectors t, n, 
b of the electron trajectory. fu the rest system 
defined by the axes 11i the polarization vector 
precesses around the axis 113, and the angular 
velocity is zero for g = 2. For the vector 113 

in the laboratory system we have 

Yj3 ={ Uo (-tsin6+bcos8); 
~'- V 1 + u2 cos2 e 

" u sine l 
-t . 

V 1 + u2 cos2 G J 

If the polarization was longitudinal initially (at 
t = 0 ), then after a certain time it becomes 
transverse. This time is given by 

T= 2uo 
(g/2-1) QL Vi+ u2 cos2 e 

X arcsin(Vl + u2 cos2 Oj V2 u0 cos 0) 

(from the point of view of clocks in the laboratory 
system). 

The polarization will be longitudinal at the 

Q3 = (f g -I) QL~ -+ gQL~-1 e (e +sin 8); (8) times 

here 

me [HXH]v I eH I 
e = e "}/3 cos2 9 ' QL = "me ' 

~=(I + u2 cos2 8 + 2e sin 6 + e2)'1', 

v is the direction of the velocity of the particle, 
and e is the "pitch angle" of the trajectory, de
fined by the condition V· H =sin e. It is obvious 
that € is a parameter that characterizes the de
gree of inhomogeneity of the magnetic field. 

Starting from the formulas (5), we can deter
mine the positions of the unit vectors 11h in the 
laboratory coordinate system ( 1. s.) at each in
stant of time: 

T]~ = {x;;-1 [!;JLXU]; 0}, 

TJ~ = x;;- 1X~1 {[Q 1 xu]+ (QLxu) QL- (I + u• cos• 0) Diu 

- ([QLxul [QLxul/l [QLxull 2) [QLxul; - ix~uo}, 

TJ~ = {- u0 QLx~1 (~HIH + eu/u); - iuQLx~1 (e +sin 6)}. 
(9) 

The curvatures K0 , K1 that appear here are given 
by 

Xo=]I2LXull, x1=DL~; ~=ellel, QL=-(e!mc)H. 

fu a uniform magnetic field we must set E = 0, 
e = const, so that we have 

(n = 0, I, 2, ... ) 

and transverse at the times 

Assuming u « 1, e « 1 and neglecting quanti
ties of the orders u2e2 and e4, we get 

T= (n! (g -2) QL) (I+ 0.6462), 

i.e., in the nonrelativistic region the time of 
transition from longitudinal to transverse po
larization does not depend on the speed of the 
particle. Measurement of this time gives a pos
sibility for determining the gyromagnetic ratio 
g.4 If high accuracy is to be obtained the angle 
of rotation of the spin must be large. One 
achieves this by bounding the region of uniform 
field by magnetic traps at its two ends, so that 
the particle is reflected and passes back and 
forth between the traps many times, while being 
essentially in a uniform field. Then, however, 
one must examine the additional rotation of the 
spin on reflection from a trap, and the effects 
of unavoidable inhomogeneities of the field. 
This can be done conveniently by starting with 
the equations (8). 

As is well known, the existence of an electric 
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dipole moment of an elementary particle is in 
contradiction with CP or T invariance. With 
a slight modification, the experiment considered 
here gives a possibility for an experimental test 
of the vanishing of the electric moment.4 'Let us 
write down the equation of motion of the· spin for 
a particle that has both magnetic and electric di
pole moments: 

(10) 

Equation (10) is the only possible equation linear in 
sJ.t that together with Eq. (1) satisfies the con
ditions 

rf (s"u,J I dT c= d (s~) I dT = () 

In the nonrelativistic case Eq. (10) has the form 

dsldt = -(e/2mc) {g[Hxs) + f[Exs)}, 

from which it is clear that the magnetic and elec
tric moments of the particle are p. = g (eti/2mc )s, 
p = f ( eti/2mc )s. The tensor 'F p.v that appears 
in Eq. (10) is the dual tensor of the electromag
netic field: 

~ l . 
F f'.V = 2 lE[<v).pF /.p• 

Let the unit vectors 7)~ be determined as be
fore from Eqs. (5) and (6). The angular velocity 
of the rotation of the spin in the axes 1Ji is 
given by 

Qii =- [x;i + (e/2mc) (gFf'.v + (Ff'.v) 1']~1']£]. (11) 

We get from this for the case of a uniform mag
netic field 

The electric dipole moment leads to the appear
ance of a component Q1, i.e., to an additional 
rotation of the spin around the principal normal 
n of the Frenet axis system. If, however, I fl 
« I g/2 - 11 , the component Q3 that comes 
from the magnetic moment is much larger than 
Q1 and makes measurement of f difficult. A 
method in which the rotation of the spin because 
of the anomalous magnetic moment is compen
sated seems more attractive.4 

For this purpose one has only to apply in ad
dition to the uniform magnetic field (along the z 
axis) a radial electric field Er = a/r (in a cy
lindrical coordinate system). It can be shown 
that as before it is possible for the particle to 

move along a spiral, but with altered frequency 
and radius. The positions of the axes 1Ji in the 
cylindrical coordinate system are then given by 
the formulas 

1']1 ={-1, 0, 0; 0}, 

1']2 ={0, ~~. -~-1u2 sin 6cos6; -i~-1uoucos6}, 

1'] 3 = {0, 0, - ~u0 ~ -r; - i~~ -lu sin 6}, 

~ = (I + u2 cos2 6)'''• ~ = e I i e [. 

Here we have taken the axes in the order r, q;, 
z, t, and the z axis is directed along the mag
netic field H. 

In these axes the angular velocity of the spin 
precession is 

_ {- D.Lu cos 0 _x_ u2 sin 0 cos 0 
Q - f 2 (1 + x) ' gQL~ 1 + x 2uoA -' 

X 1; x [ ( ~ - I) ~ + f~ )} ' 
where x = ( ea/mc) (Uo /u2cos26 ). If a is meas
ured in volts, then x = 1.96 • 10-6aUo/u2cos 26. 
By a suitable choice of the electric field we can 
make the component Q 3 equal to zero; to do 
this we must choose x = Xo = - ( g - 2 ) g-1 ( 1 
+ u2cos26 ). On each reflection from a trap the 
angle 6 changes sign. We note that Q1 is an 
even function of 6, and Q2 is an odd function 
of 6; therefore after one complete cycle of mo
tion between the traps the rotation of the spin 
comes only from the component 

Q = _ DLucosO __ lJL QLucos 9 
1 f 2 (1 + x0) - 4 1- (g/'2- 1) u2 cos2 0 · 

Measurement of the spin precession frequency Q1 
offers a method for determining the gyroelectric 
ratio f. 

In conclusion I express my gratitude to V. V. 
Vladimirskil for suggesting this topic and for a 
discussion of the results, and also to A. S. Shapiro 
for his interest in the work. 
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