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We considered the dielectric constant for a relativistic electron-ion plasma, taking spatial 
dispersion into account. We obtained expressions for the screening radius and the skin
depth. Both undamped and weakly damped plasma oscillations were considered. 

l. Relativistic plasma has recently drawn more 
and more the attention of physicists, as witness 
the number of papers devoted to the theory of a 
relativistic electron plasma.1- 7 The present 
communication is devoted to a consideration of 
the electromagnetic properties of an electron
ion plasma characterized by a complex dielec
tric constant that takes spatial dispersion into 
account. We shall in the following not take into 
account the dissipation caused by the collisions 
between particles. 

2. In a medium with spatial dispersion- the 
simplest example of which is a plasma- the con
nection between the induction and the electrical 
field strength is well known to be (see, for in
stance, reference 8) nonlocal both in time and in 
space. We have, namely, for an infinite uniform 
medium 

t 

D;(r,t)=~dr' ~ dt'~ii(r-r',t-t')Ei(r',t'). (1) 
-00 

We take for the dielectric constant tensor the 
quantity 

00 

eii (w, k) = ~ dre-ikr ~ dte1"'1 ~ii(r, t). 
0 

(2) 

It is necessary also to define the induction of the 
electric field. We shall not use in the following 
the concept of the magnetic field strength, so that 
we take for D the definition 

t 

D (r, t) = E (r, t) + 4:rt ~ dt'j (r, t'): 
-co 

These relations define a dielectric constant that 
takes spatial dispersion into account. 

In the case of an isotropic system, the dielec-
tric-constant tensor can be written in the form2 

Such a tensor enables us to write down many 
electromagnetic properties of the medium. In 
particular, the transverse field oscillations are 

defined by the condition 

and the longitudinal oscillations by the condition 

el (w, k) = 0. 

The conventional dielectric constant corre
sponds to the limit of the longitudinal and trans
verse dielectric constants for k = 0 

e ( w) =lim e1 (w, k) =lim e1' (w, k). 
k=O k=O 

(4) 

The concept of a screening radius for the in
teraction is of great importance to the description 
of the interaction between particles. Such a con
cept has a simple physical meaning only in the 
case of a static field, and is thus defined through 
the limit of E ij for w = 0. The limit of the 
longitudinal dielectric constant is then finite. The 
screening radius for the longitudinal interaction 
is therefore defined by the equation 

lim lim k2 ( e1 - l) = r;;-;r. 
k=O<»/k=O 

It is necessary to let w tend to zero first, and 
afterwards take the limit k - 0. This means 
that one can only speak about a screening radius 
at large distances, where the decrease of the 
field is characterized by an exponential law.* 

We must finally discuss still one more char
acteristic of the electromagnetic properties, 
also determined by the dielectric constant. In 
the limit w/k - 0, the skin depth is a char
acteristic distance in the variation of the trans
verse field. When the mean free path can be 
assumed to be infinite, the anomalous skin-effect 

*In the language of the theory that uses Green functions to 
describe many-particle systems, the different limits of E when 
k/w ... 0 and when w/k ... 0 correspond to different limits of the 
field Green functions in the time and space regions for small 
k and w. A similar situation occurs also for the vertex part 
and also for the two-particle Green function, as was noted by 
Landau." 
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occurs. The transverse dielectric constant can 
then be written in the form* 

e1' = (4ni j ro) o1' (k), ~tr = C/k, 

where C is a constant which depends on the 
actual properties of the plasma. One easily sees 
from this and from Eq. (3) that the skin depth of 
the transverse field is equal to 

6 = (2c2 I nCro)''·· 

We go now over from these general considera
tions to a discussion of the dielectric-constant 
tensor and of the quantities that determine this 
tensor for a relativistic plasma. 

3. We shall use Vlasov's self-consistent field 
approximation to obtain the dielectric-constant 
tensor of a relativistic plasma. We have then for 
a description of the electron and ion distributions 
(see, for instance, references 2, 3, 5, and 7) 

iJfel iJfel 1 ( 1 1 \ i)fer_ at+ Vera;:--,- e E-, 7 rve1XB]) iJp - 0, 

dfi + V· iJfi- ze(E + ...!_ [v XBJ) dfi = 0. 
·iJt 1 iJr , c i iJp (5) 

fel and fi are here the electron and ion distribu
tion functions, Vel and Vi the velocities of the 
corresponding particles, and Z the ionic charge. 
The electrical charge and current densities are 
equal to 

p = e~ dp Ue·-Zh), j = e~ dp(verfer-ZvifJ. 

We can obtain the dielectric constant from the 
linearized transport equations, in which we re
tained in the last term only the equilibrium dis
tribution function, as we assume that there is 
no constant magnetic field. Moreover, it is nec
essary to take retardation into account when we 
determine the dielectric constant. In that case, 
if we have at time to a given non-equilibrium 
addition Of ( r, p, to) to the distribution function, 
we have at time t 

of.,r(r, p, t) = ofer(r- v'H(t- to), p, to) 

a·o t 

- ;;1e ~ dt'E (r- Vet(t- t'), t'). 
r, 

(6) 

Here ~l is the electron equilibrium distribution 
function. The solution of the transport equation 
for the ions has a similar form. 

*In the case 'of a quantum-mechanical system, the limit of 
the dielectric constant as w/k ... 0 contains terms -(k/w)', 
which lead to diamagnetism. One can easily understand this 
from the definition of the magnetic permeability' tJ.(W, k): 

1 - 1'--1 (ro, k) = (w2 I c•k•) (l'- s1). 

Assuming the interaction to be switched on 
adiabatically infinitely far back in time, we have 
from (6) 

f.O t 
ofer(r, p, t) =- ~;1e ~ dt'E (r- Ver(t-t'), t'). (7) 

-00 

Using (3) and (7) we get 

(8) 

The dielectric constant tensor (8) was obtained 
by us as a function of the real arguments w and 
k. In accordance with the fact that we are dealing 
with a retardation, the contour for integration 
over the momenta must be arranged such that the 
pole "' = ( k • v ) of the integrand on the right hand 
side of (8) is encircled from below .10 

From (8) we have 

_ 4ne2 \ f odvel o iJvi( 
e (ro)- 1-&;;2 ~ dp )felap + Z2fi apJ , 

r;:,;r = - 4~te2 ~ dp {f~{ + Z2f1'L 

c = - n;• ~ dp {t;~veloC::; + Z2t~' vi 0 c::)}. (9) 

We have taken it into account here that the equi
librium distribution functions are functions of the 
energy; the prime indicates a derivative with re
spect to the energy. 

4. Let the electrons be ultrarelativistic. Their 
contribution to the dielectric constant will then 
be of the form 

4ne2c ~ at:rPt Pi 1 
6eerii(ro, k) =-- dp-d. -. k , ' w p p w -c PtP 

(10) 

We have then for the longitudinal and transverse 
dielectric constants 

6t/(ro k)-4-rre• A{l..!...~ln\w-ckl-1-inw(ck-w +t)} 
el ' - ck2 ' 2ck . w -L ck . ' 4ck , ! ck -- "' 1 • ' 

(11) 

ost' (ro k) = ne• A{- 2w + [t - (~)2] ln / w- ck /-+-el ' ckw ck ck w + ck ' 

+ i; [t-(~rJc~:=:~ + t)}. 
A= c (iJNerf d!Le~=- ~ dp of;1/ op. (12) 

In the case of a Boltzmann electron distribution 
[( f ~ exp (- cp/ KTei>l we get 

A =CNerJXT.,], (13) 

where Nel is the number of electrons per unit 
volume,* K is Boltzmann's constant, and Tel 

*In the case where there is an equilibrium number of elec
tron-positron pairs, N el = 0.183 (KT er/tic )3 • 
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the electron temperature. For the case where 
the electron gas is degenerate we have A· 
= 3Nel1Po. where Po = ( 37!"2 )1/ 31'iNel11 3 is the 
limiting momentum of the Fermi distribution.* 
Equations (11) and (12) are similar to the ones 
occurring in the theory of a degenerate nonrela
tivistic electron gas. The reason for this is that, 
both in the case of the ultrarelativistic gas and 
in the case of the nonrelativistic degenerate 
electron gas, the particles determining the dielec
tric constant have all the same velocity, the ve
locity of light in our case and the velocity on the 
Fermi surface in the case of a degenerate Fermi 
gas. 

The limiting characteristics of € ( w ), rs~r· 
and C following from Eqs. (11) and (12) are 
of the form 

41te2c -• 47te2 1re2 
OSel(w)=- :Jw2 A, o (rs.;r).,l= -c- A, ilCe1= 4 A. (14) 

For nonrelativistic particles, and we consider 
the ions to be such particles, the contribution to 
the dielectric constant is well known to be 

41te2Z2 (' P; at1 
08iii(w,k)= wM .)dpw-kpJMap1 • 

where M is the ionic mass. In particular we 
have for a Maxwell distribution of the ions 

os! (w k)- (l)~i~ /1 +~~I M _1_(' dxe-x' } 
1 ' - k2 xT i \ k V 2xT i y; .) x- (w/k) Y M;2xT i ' 

(15) 

os~' (!) k = w~i 1 I M _1_ (' dxe-x' 
1 ( ' ) kw V 2xT i V ~ Jx- (w/k) V M/2xT i' ( 16) 

where w5i = 47re 2Z 2NifM, and where the pole of 
the integrand is encircled from below. 

From (15) and (16) we have the following equa
tions which are analogous to Eqs. (14) 

(l)~i .. /----;;1 
oCi = 4 V 21rxT- ' 

1 

Comparing Eqs. (14) and (17) we see that if the 

(17) 

electrons have a Boltzmann distribution, the extra 
contribution to € ( w) is determined by the elec
trons in each case where the condition KTel 
« Mc2 is satisfied. In order that the same be 
true for the skin depth, it is necessary that the 
condition KT el « vi Mc2KT i be satisfied. It is 
evident that this condition is violated when 
Tel .G 1 03T i . Finally, for the screening radius 
the situation is the same as in the nonrelativis-

*The dielectric constant of a degenerate relativistic elec
tron gas was considered in a paper by Lindhard. 2 

tic case, namely 
r;-.,2r = ( 4l1e2/x'l,;J [ 1 + ZJ;;y'T i]. 

This is due to the fact that in the nonrelativistic 
limit the screening is independent of the mass of 
the particles, but the difference in the relativis
tic case lies essentially in the dependence of the 
mass on the velocity. We note that the conditions 
under which the electromagnetic properties of 
the plasma are determined by the electrons or by 
the ions are completely similar for ultrarelati
vistic Fermi-Dirac electrons; we must only use 
cp0/3 instead of KTel· 

5. We turn now to a consideration of the 
propagation of electromagnetic waves in a rel
ativistic plasma. 

In a nonrelativistic isotropic plasma the mo
tion of the particles and accordingly the change, 
reflecting this motion, of the spatial dispersion of 
the dielectric constant influences the propagation 
of transverse waves only weakly. In our case the 
particle velocity is very large and the part played 
by the spatial dispersion therefore increases. 
This is clear from the following relations for the 
transverse waves, obtained from (3) by assuming 
that the electron energy is small compared to the 
rest mass energy of the ions.* 

w 2 = j- rce2cA + { c2k 2 if w :> ck, (18) 

w2 = 2rce?cA + c~k 2 if w ~rck. (19) 

Indeed, in the case of Eq. (18), taking the mo
tion of the particles into account changes the term 
proportional to k2 by 20%. In the case of Eq. (19), 
however, the constant term is changed by a factor of 
one and a half by taking into account the spatial 
dispersion. Because the phase velocity of the 
transverse waves is greater than the velocity of 
light and is equal to it in the limiting case of in
finitely short waves, the transverse waves are not 
damped. We can thus drop the imaginary parts 
when substituting (12) and (16) into (3). 

We turn now to longitudinal waves. Two modes 
of natural vibrations, the so-called plasma and 
acoustical branches are possible, as in the case 
of a nonrelativistic plasma.11 We consider first 
the plasma oscillations. In this case one can 
easily see from (4), (14), and (17) that in the long
wave case the frequency tends to a limit equal tot 

w0 = (4rce2 Aj3 + w~r)''·· 
*In the nonrelativistic case the equation 

w2 = w~ e! + c2k2 , where w~ el = 477e2N e 1/m 
corresponds to Eqs. (18) and (19). 

(20) 

tAssuming that the electron energy is small compared with 
the rest-mass energy of the ions, we have w2 = (4/3)77e2cA 
+ (3/S)c2k2 in the region ck « w0 • 
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It follows from this that as k - 0 the phase ve
locity increases without limit. 

It is well known that in the long-wave region, 
where the phase velocity is greater than the ve
locity of light, there is no damping.4 As'long as 
we can speak about ultrarelativistic electrons, 
i.e., as long as we can neglect the difference be
tween their velocity and the velocity of light, the 
minimum phase velocity of the longitudinal plasma 
waves is also the same as the velocity of light. 
Indeed, we have in the short-wave limit (kc » w0) 

from (4), (11), and (15); 

w = ck{l + 2exp [- L"c:.~ -2 + 2n:~:A j} · (21) 

The damping is then, of course, also equal to zero. 
However, to be able to apply Eq. (21) to the case 
of a Boltzmann plasma, the electron temperature 
must satisfy the condition 

x'f.,1~ mc2 ln (ckjw0). 

It is thus necessary for short wavelengths, where 
this condition is violated, to take into account the 
fact that the particle velocity is different from the 
velocity of light. In other words it is no longer 
possible to use Eq. (10), obtained for ultrarelativis
tic electrons. 

Since, however, the average thermal velocity 
of the particles in an ultrarelativistic gas differs 
only very little from the velocity of light, the 
minimum phase velocity will also differ little 
from the light velocity. One can, namely, use 
(8) to verify that this difference is of the order of 
magnitude of c ( mc2 / KTel )2• It is also important 
that the number of electrons with velocities ap
preciably different from the average thermal ve
locity be very small, i.e., that there be a small 
spread in electron velocities. This leads to the 
fact that when the phase velocity of the plasma 
wave tends to its minimum value the damping 
turns out to be relatively small, namely y/ w 
~ (mc2/KTel)2• 

The second branch of longitudinal vibrations
acoustical waves- is only possible in a plasma 
because of the spatial dispersion of the dielectric 
constant. This should already be evident from 
the fact that the velocity of such waves can be 
small compared with the electron velocity. This 
last fact leads to the occurrence of damping 
caused by the electrons. The Cerenkov mecha
nism of damping of the oscillations in a plasma 
occurs when there is some group of particles for 
which the condition (k • v) = w is satisfied. In 
our case the electron velocity differs little from 

the light velocity; if, however, the sound velocity 
is small compared to the light velocity, only a 
small part of the electrons, moving nearly perpen
dicularly to the direction of the propagation of 
sound, will take part in the absorption of the vi
brations. Similarly, if the phase velocity of the 
wave is appreciably larger than the average ther
mal velocity of the ions, only a small group of 
ions which have velocities much higher than the 
thermal ones will be involved in the absorption of 
sound. Under such circumstances where a small 
part of the particles in the plasma is involved in 
the absorption, one can expect the damping of 
sound to turn out to be relatively small. 

If the electron velocities have a Boltzmann 
distribution the velocity of sound turns out to be 
small compared with the average velocity and 
at the same time large compared with the thermal 
velocity of the ions, when Mc2 » ZKTel » KTi. 
We get then from (4), (11), and (15) for the velocity 
of sound 

(22) 

Equation (22) is the same as the corresponding 
formula for the sound velocity obtained in the non
relativistic plasma theory (see reference 12). This 
is understandable, as the sound velocity in that 
case is independent of the electron mass. 

If the electron distribution is a Fermi-Dirac one, 
the condition similar to those under which Eq. (22) 
is valid in the Boltzmann case is determined by 
the inequalities Mc2 » Zp0c » KTi. We have then 

Vs = YZp0cj3M. (23) 

The contributions from the electrons and the ions 
add up for the absorption of sound waves of a ve
locity determined by Eqs. (22) and (23). The elec
tron part of the logarithmic decrement is con
nected with the sound frequency by the relation 

7t vs 
ie1= 47w. (24) 

We note that such an absorption of sound in a 
plasma is very similar to the absorption of 
sound by electrons in a metal in the low-tern
perature region, which has been extensively 
studied recently both theoretically and experi
mentally. 

The ionic part of the logarithmic decrement 
is determined by the expression 

- ( Mv2 )'I• ( Mv2 ) li = w Y 1t -. - 5- exp - -,--Ts , .. xr i LX i 

the structure of which shows that for this part 
we can essentially use the results of the non
relativistic theory _13 

(25) 
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·We emphasize that to be able to apply Eqs. 
(24) and (25) it is also necessary that the Ceren
kov dissipation of the sound wave be the basic 
one, as the entire foregoing analysis does not 
take into account the usual dissipation mecha
nism, which is connected with collisions. 
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