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A peculiar "electron transition" due to variation of the topology of the Fermi surface during 
its continuous deformation may occur in metals at high pressures. At the point of such a 
transition, the electron-state density near the boundary surface, and the electron dynamics 
also possesses some peculiar features which lead to anomalies of the electron characteristics 
of the metal (thermodynamic and kinetic). The most characteristic anomalies in the vicinity 
of the "electron transition" point at low temperatures are investigated. The possibility of 
an ism orphic first-order transition near the ''electron transition" point is discussed. 

INTRODUCTION 

k connection with the peculiar features of the 
energy spectrum of conduction electrons in 
metal, characteristic anomalies of thermody­
namic and kinetic quantities can take place at 
low temperatures in the region of high pres­
sures. The nature of this phenomenon consists 
of the following. 

As is well known, the electron state density 
v ( E) = dN (E)/ dE of conduction electrons is 
connected with the form of the constant energy 
surfaces in momentum space, E (p) == E. Those 
values of the energy E == Ek, for which the to­
pology of these surfaces changes [for example, 
an open surface changes to a closed surface by 
disruption of a "neck" (Fig. 1a), or a new split­
off region of surface appears (Fig. 1b)], corre­
spond to peculiarities of the surface density 
v (E). At the same time the "critical" surface 
E ( p ) == Ek contains singular points, near which 
the electron dynamics has an unusual character. 

Generally speaking, the value of Ek is lo­
cated sufficiently far from the chemical potential 
of the electrons /;, and one can ascertain the 
presence of singular points Ek only by the x-ray 
spectrum. However, if there exists any continu­
ously changing parameter whose variation causes 
the difference /; - Ek to pass through zero (i.e., 
changes the topology of the Fermi boundary sur­
face ) , then the peculiarities of the spectrum den­
sity v ( E) and the electron dynamics close to the 
"critical" surface E ( p) = Ek lead to singular 
anomalies of thermodynamic and kinetic char­
acteristics of the electron gas in the metal. 

Deformation of the lattice, and in particular 

FIG. 1. a- Disrup­
tion of the "neck" of 
a Fermi surface, b­
appearance of a new­
detached region. 
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hydrostatic compression at high pressures, can 
serve as such a continuous parameter. It is 
well known that at high pressures the anisotropy 
of a large number of properties is reduced, and 
therefore one can expect that a Fermi surface 
of the "corrugated cylinder" type, which is 
characteristic for layered structures, should go 
over, by gradual deformation, into a closed sur­
face [even if the total number of electrons in 
the conduction band is constant (see Fig. 2a, b, 
c)]. It appears that other examples of variation 
of the topology of the Fermi surface are pos­
sible. It should be emphasized that a change of 
the topology of the Fermi surface is not connected 
with a change in the symmetry of the lattice, and 
therefore does not correspond to a phase transi­
tion of second order. 

FIG. 2. Gradual tran­
sition of an open surface 
of the "corrugated cylin­
der" type into a closed 
band. 
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On the other hand, the primitive lattice can 
cease to be thermodynamically stable up to the 
approach to the "critical" Fermi surface, so that 
the phase transition of first order takes place 
before the anomaly connected with the variation 
of topology.* However, since the time of electron 
''attuning'' in the deformation of the lattice is 
shorter than the time of realignment of the lattice 
in the phase transition, similar anomalies can be 
observed even in short-lived metastable states. 
Therefore, in what follows, the problem of sta­
bility or metastability of a state close to the point 
of variation of the topology of the Fermi surface 
can be disregarded. 

Another parameter- the concentration of im­
purities or components in an alloy- would ap­
pear to change the chemical potential t in the 
Fermi surface strongly; however, for an irregu­
lar lattice, the very concept of a Fermi surface 
loses its exact meaning, owing to the absence of 
translational symmetry; therefore the singularity 
of v ( E) is smeared out and is practically absent. 

We shall investigate below the properties of 
the metal near the singular point of an "electron 
transition" (variation of the topology of the Fermi 
surface). We shall begin with the case of zero 
temperature, at which the thermodynamic charac­
teristics possess singularities connected with the 
singularities v ( E). These singularities fade 
away with increase in temperature; the corre­
sponding estimates are given at the end of the 
first section. 

1. ANOMALIES OF THERMODYNAMIC 
QUANTITIES 

The state density is determined by the equation 

v(e) = (2rc)-3V ~ dQv/1 Vpej. (1) 
E(p)=E 

V is the volume of the metal and dQp is the ele­
ment of surface area of E ( p) = E in p- space. 
Close to the singular point Po on the "critical" 
surface, E (p) has the form 

e(p)=sk+P'2 cp(n), p-p0 =p'=p'n, (2) 

where n is a unit vector. 
In the simplest case, when there is no de­

generacy at the singular point p' = 0, we obtain 
by s~itable choice of axes 

*Evidently, such is the case in the so-called isomorphic 
transition, where the parameters of the lattice undergo a dis­
continuous change in one and the same type of structure (see 
below, page 1133). 

s(p) =sk ±P~2 /2ml ±p~2 j2m2 ±P~2 j2m3 • (2a) 

If the signs of Pi2 are identical, then a new sur­
face recess appears at the point p = p0; if these 
signs are different, then the neck is disrupted at 
this point (see Fig. 1,a, b). 

It is easy to demonstrate that the state density 
close to the point Ek is v (E) = v0 (E) + ov, where 
v0 ( e:) is a smooth function and 6 v differs from 
zero only on one side of the point Ek - on the side 
where the number of recesses of the surface e: (p) 
= e: is large: 

, {0; uV= 

~ js- Ek ( 1', (l ~ N I c'1' > 0. (3) 

In what follows, to be specific, we shall assume 
that the number of surface recesses increases for 
E > e:k. In this case, for a total number of states 
N (E) = N0 (E) + oN, we have 

oN= { o, s < sk 

f oc (s- sk)'1', e > Ek· (4) 

Correspondingly, we have for the thermody­
namic potential Q, 

00 

oQ = _( oN de 
~ i+exp[(e-~)/TJ 
0 

( T is the temperature in ergs) or, setting E - Ek 
=X, t- Ek = Z: 

2a 00~ x'l, dx on=--3 
0 

i+exp[(x-z)/T]· (5) 

At low temperatures, T « I z I, we obtain 

oQ = {- <V;/2) aT'1'exp (-1 z 1 jT), z < 0, 
- ~ rx,z'1'- (rc2 / 6) aP z'lz, z > 0. 

For T = 0, 

on= { o, 
-- _!_ ocz. 1• 

15 ' 

z <0, 

z>O. 

This means that the second derivatives of Q at 
the point of "electron transition" z = 0 have a 
vertical break, while the third derivatives go to 
infinity as z-1/l. 

(6) 

(7) 

Inasmuch as the number of conduction electrons 
must be considered constant (at least 'in the vi­
cinity of the point t = Ek ), it is useful to employ 
the free energy F ( T, v) per electron. In this 
case the volume v is a parameter connected with 
the applied pressure; Ek = Ek ( v) is a direct func­
tion of the volume v and the chemical potential t 
is also a function of v by by virture of the contancy 
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of the number of particles:* 

N (C, v) = 1. (8) 

Denoting by Vk the volume at which the varia­
tion of the topology of the Fermi surface begins 
(i.e., z = t- Ek =0 ), we have 

N0 (Ek(vk), vk) =I. (9) 

From (8) and (9), we get 

z = "( (v- vk), "( = -(aN0 (av + v0dEkjdv) lv0 • 

Writing the free energy F in the form 

F=F0 +oF, 

(10) 

where F0 is the smooth part of the free energy 
plotted against the density v0 (E), it is easy to be 
convinced that oF is quantitatively equal to the 
irregular contribution on' expressed in the va­
riables v and T. Thus oF is given by Eqs. (6) 
and (7), where one must set z = y ( v - vk). Then, 
as T-O 

o£= -oi)2f =r· z<O, 
T iJT2 ( rr2 1 3) a.z'", z>O; (11) 

o ._!_ ap, = - _i__ o iJ2F = JO, z < 0, 
T iJT T iJTdv \(rr213)a.tz-'l•, z > 0. (12) 

0 ap, __ 8 a2F = {o, z<O, 
i)v - av• (1.."(2z'f,, z> 0; (13) 

The expression (11) represents the anomaly of the 
electron specific heat C for z > 0: 

C/T=(C/T)0 {1 +(J,z'l•lv0 }. 

The expression (12) gives the anomaly of the co­
efficient of electron compressibility. The total 
pressure in the metal is made up of the electron 
pressure and the pressure PL of the lattice 
"core" of the metal, which frequently com­
pensates it. However, inasmuch as the lattice 
part of the compressibility apLiav is continuous 
at the point z = 0, t then the peculiarity of the 
total coefficient of compressibility is given by the 
same expression (see Fig. 3a). 

Finally, as seen from (13), the strongest singu­
larity is possessed by the thermal coefficient of 
pressure BpiBT (Fig. 3b). Considering that at 
low pressures it is the electron part of the ther­
mal coefficient of pressure that plays the funda-

*In the case of several intersecting zones, N( (, v) is the 
total number of particles in all the zones. 

tit may tum out that the part of the "lattice" binding en­
ergy, brought about by the conduction electrons, has a singu­
larity at the point z = 0 of the same character as that of 0 0 ; 

this would give an insignificant contribution to ap;av, which 
does not change any of the results qualitatively. 

FIG. 3. a- Anomaly of the co­
efficient of compressibility close 
to the singular point z = 0, b­
anomaly of the thermal coefficient 
of the pressure near the point z = 0. 

a b 

mental role, we have for the smooth part of BpiBT: 

(aplaT) 0 =AT, A =(n2 13)av0 /av. 

Thus, in the region of the anomaly, 

(::)u =AT {I+ a.tz-'1' I 2 ~~o}, z > 0. (14) 

The same sort of singularity is possessed by 
the coefficient of thermal expansion ( aviBT )p 
=- (Bpi aT >vi( BpiBv )T: 

(:;)P =~~{I+ a.tz-'1' 12~:}, x0 = -(~~)0• (15) 

To be able to consider the anomalies in all the 
formulas (6)- (15) on a pressure scale, it suf­
fices to assume that p - Pk = - Ko (v - vk) and, 
consequently, 

(16) 

In this case, it is convenient to estimate the 
coefficients y, yl Ko and the critical pressure p 
by expressing them in terms of the original dif­
ference of the energy z0 = ( t - Ek ) 0 (for zero 
pressure), and also of the critical deformation 
(v0 - vk )/v0, for which the transition 

I Z I = I Zo II P- Pk I I Pk, Pk = xo i Vo- vk i , 

(17) 

exists. 
Naturally, the expressions (17) are only esti­

mates, since the linear relations between p, 
v - v0 and z - z0 are violated in the large in­
terval of deformations. If we set I v0 - vk I I 
v0 - 0.05 to 0.1 for critical deformation, then 
Pk- 5 x 104 to 105 kglcm2.* 

Equations (11)- (15) are valid for T « iz j. 
Thus, for finite temperatures, the singularities 
of all the thermodynamic quantities are lessened. 
The width of the temperature lessening of the 

*It can be thought that less symmetric deformations (for 
example, uniform. compression or tension) greatly change the 
geometry of the Fermi surface and require smaller stresses. 
In particular, violation of the initial symmetry of the crystal 
for such appropriately small deformations can lead to a split­
ting of the surface at the points of unavoidable self-intersec­
tion (for terms of identical symmetry) and lines of accidental 
intersection (for terms of different symmetry). 
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anomaly will be ~z ~ T; on the pressure scale 
this gives 

~pi Pk = T lj Z0 I= T IIC- Eklp=c• (18) 

As follows from Eq. 12, the negative quantity 
( 8p/8v )o = -Ko obtains a positive increment ~ z1/ 2 

in the region of the anomaly. If as a result, p ( v) 
ceases to be a monotonic function and becomes 
positive at some point Bp/av, then an isomorphic 
phase transition of first order takes place with a 
discontinuity in the volume. Writing the expansion 
of Bp/av for small z > 0 and T --. 0: 

(18a) 

we establish the fact that the region of instability 
( Bp/av > 0) can exist for the condition ay2 

> 2 ,JK0K, and lies to the right of the point z = 0 
in the interval 

<Xi2- V (<Xi2)2- 4xoxl < 2xoZ: < <Xi2 

+ V (rx1'2)2- 4xoxl. (19) 

Here the point of "electron transition," 
z = 0, lies itself in the region of metastability or 
stability. 

Since the singularity at the point z = 0 is re­
duced at finite temperatures, one should not call 

-pH 

(see Fig. 4). 

FIG. 4. Anomaly of the 
paramagnetic susceptibility 
close to the point z = 0. 

However, the actual picture is somewhat further 
complicated by the superposition of quantum dia­
magnetism, which we have not taken into account 
here. 

the "electron transition" at the point z = 0 a 
phase transition; in this connection we always 
speak of "anomalies" at the point z = 0, although 
in the terminology of Ehrenfest one could tenta­
tively call such anomalies at T = 0 "transitions 
of the 2! order," since the second derivatives of 
the thermodynamic potentials have a singularity 
~ z112, and the third derivatives have a singular­
ity ~z-1/2 • 

To conclude this section, we determine the 
anomaly of spin paramagnetism at T = 0. In an 
external magnetic field, the spin magnetic mo­
ment will be 

M = 11 {N (C +!!H) -N (C- [LH)}, 

N+ + N_ = const, 

while the magnetic susceptibility x = aM/aH has 
the form 

X= {v (C + [LH) + v (C- [LH)} [1-2 = Xo 

+ {ov (z +!!H)+ llv (z-!!H} (..1.2, 

Xo = fl-2 {vo (C + flH) + "o (C- f-tH)}, 

ov (z) = { ?1' 
rxz ', 

Then 

z+flH < 0, 

z+11H>O, 

z+11H < 0, 

z+11H> 0, 

z<O, 

z>O. 

Z-!!H< 0, 

Z-!!H<O. 

Z-!!H> 0, 

Z-!!H> 0 

(20) 

2. ANOMALIES OF GALVANOMAGNETIC 
CHARACTERISTICS 

The anomalies of the kinetic coefficients (for 
example, the coefficient of heat conduction and 
electrical conductivity, viscosity, sound absorption, 
etc.) are connected both with the singularities of 
the state density v ( E) and of the thermodynamiq 
quantities, and with the singularities of the elec­
tron dynamics on the critical surface. So far as 
the first part of the phenomenon is concerned, 
this leads, as also in the case of thermodynamic 
quantities1 to singularities of the type I z 1-1/2 
and I z 1 11 2• For example, inasmuch as the ab­
sorption coefficient of sound x1 is connected 
with the derivative of the sound velocity c with 
respect to the density, while c2 ~ a p/ av, we can 
expect that 

ox1 ~ o (a2pjav2 } ~ 1 z r•; .. 
In the present paper we shall not consider the 

detailed theory of anomalies of kinetic coefficients 
in the vicinity of the transition point z = 0. We 
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shall only investigate the case in which the entire 
effect is fundamentally determined by a change in 
the electron dynamics. This takes place for the 
electrical resistance in strong magnetic fields if 
an open surface at the point z = 0 is converted 
into a closed one (or vice versa). 

For definiteness, we shall assume that the 
initial open surface of the "corrugated cylinder" 1 

type at the point z = 0 goes over into closed 
regions by means of a disruption of the neck (see 
Fig. 2a, b). As was shown in references 1 and 2, 
the asymptotic character of the electrical resist­
ance in a strong magnetic field depends materi­
ally on the topology of the Fermi surface, and is 
determined by the presence or absence of open 
trajectories of the electrons. The latter are ob­
tained by the intersection of the Fermi surface 
with the plane perpendicular to the magnetic 
field ( Pz - const., z is the direction of the mag­
netic field). For closed surfaces there are no 
such open trajectories, and the resistance in 
strong fields generally tends toward saturation* 
(to Poo; in order of magnitude, p 00~ Po). For 
an open surface of the corrugated-cylinder type, 
open trajectories are obtained for the direction 
of the magnetic field perpendicular to the axis of 
the cylinder; this leads to an unlimited growth of 
the resistance: p ~ H2• We shall investigate pre­
cisely this case. 

We begin the calculation of the resistance in 
the vicinity of the point z = 0 with the determi­
nation of the conductivity tensor O"ik· For z > 0, 
by assumption, the surface is closed. This 
means that the conductivity has the form1 

'(2axx raxy raxz 

a)~ = ya11x y2a 1111; ya112 , (21) 
razx razy azz 

where H0 is the characteristic magnetic field, in 
which the period of precession of the electron is 
equal to its path length; the aik have the order of 
magnitude of the conductivity in the absence of the 
magnetic field. 

For z < 0, a contribution is added to the value 
of u~~ from the open trajectories. Choosing the 
x axis along the corrugated cylinder, we can write 
down the dispersion law close to the singular 
point Po on the surface E ( p ) = Ek in the form 

s = Bk + p'}/2ml- P';l2mz- p~212ma, p' = p- Po· (22) 

The contribution ouik from the open tra­
jectories is proportional to its relative share, 

*The case in which the electrons and holes are equal in 
number is an exception. 

i.e., the thickness of the layer of the open tra­
jectories ~Pz ( ~Pz is the width of the neck 
in the corrugated cylinder in Fig. 2 ). 

According to (22), 

Thus, taking into account the form of the conduc­
tivity tensor in the presence of open trajectories 
along the x axis [see reference 1, Eq. (:il9) and 
reference 2, Eq. (16)], we have 

(23) 

Retaining the principal terms in y and z, we 
can write for the total conductivity (for z < 0 ) : 

aik = aJk + oaik 

2 
'( Gxx 

'(Gyx 

'(Gxy 

2 ! z -. 1'/· r auu<j ~- b11u 
' z 1'/, 

'(Gyz + I T byz 

I z 1'/, 
'(Gzy + -y bzy 

where bik = bik ( z ) . Then, for the resistance 
along the x axis, 

_ ( _1) _ ayyazz- ayz azy + b11y(z) I z 1'/, (' H )2 P- a xx- -- - -
lax11 12 azz laxyl 2 1; Ho • 

'(24) 

(25) 

To make clear the dependence of byy on z = t 
- Ek, it is necessary to take into account that the 
velocities Vx and vy are very small (vl ~ p') 
on open trajectories close to the singular point 
p' = 0, and that the time of motion close to this 
point on the curve E = Ek diverges logarithmically 
[see reference 3, Eq. (3.15)]: 

T~~dpxlv11 ~ In (e-ek). 

Therefore, the fundamental contribution to the 
mean velocity vy is given by the motion nea:_ this 
point; this leads to the following estimate of vy: 

;:u ~vI In ( 1 z I I q, 

v = velocity of the electron far from the singular­
ity. 

Inasmuch as the contribution to the conductivity 
O"yy made by the open trajectories contains the 
factor v~ (see reference 2), then 

by11 -a/In (~/I zl). (26) 

Finally, we obtain 

J , i z 1'/, ( H )z/ I; 
L= A,B ~·;, .Ho I In z' z<O, (27) 
Po l A, z> 0, 

where A and B are constants of the order of 
unity. 
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The anomaly of the pressure derivative of the 
resistance is especially sharp: 

__!_ 0 ~ _ Bz0 ( H )2/ln _£ 
Po dp - 21 z J'h <;;'h pk \Ho I z I' (28) 

Attention must be given to one characteristic cir­
cumstance: while the anomalies of the thermody­
namic quantities are located in the region z > 0 
(i.e., to the right of the point of "electron transi­
tion,'' z = 0), the anomaly of the resistance lies 
in the region z < 0 ( i.e., to the left of the point 
z = 0 ).* 

As follows from the estimates (18), all the 
anomalies are more marked at low temperatures; 
however, the effect exists even in the region of 
very high temperatures. As far as the anomalies 
of resistance in a magnetic field are concerned, 

*A much weaker anomaly of the resistance due to thermo­
dynamic parameters takes place also for z > 0. 

the entire effect is essentially a low temperature 
one, since it takes place only when the radius of 
curvature of the trajectory of the electron in the 
magnetic field is much less than its mean free 
path. 

1 Lifshitz, Asbel, and Kaganov, JETP 31, 63 
(1956), Soviet Phys. JETP 4, 41 (1957). 

2 I. M. Lifshitz and V. G. Peschanskil, JETP 
35, 1251 (1958), Soviet Phys. JETP 8, 875 (1959). 

3 I. M. Lifshitz and M. I. Kaganov, Usp. Fiz. 
Nauk 69, 419 (1959), Soviet Phys.-Uspekhi 2, 
831 (1960). 

Translated by R. T. Beyer 
300 


