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Quantum and exchange corrections to the energy and the chemical potential of the Thomas
Fermi atom are derived and numerical calculations of thermodynamical functions for a cold 
atom are presented. The extrapolation of the model into the region of normal densities is 
considered. The calculations are compared with the experimental data. 

1. INTRODUCTION 

ONE of the models used for the description of 
the behavior of matter at high temperatures and 
pressures is the statistical Thomas-Fermi model 
of the atom (abbreviated TF model), 1•2 which is 
the quasi -classical approximation to the method of 
the self-consistent field. The inclusion of exchange 
effects in the Thomas-Fermi-Dirac (TFD model)1•3 

represents a refinement of this approximation. 
However, the TFD model is not consistent, since 
here the exchange effects are computed exactly 
within a quasi-classical framework, i.e., one con
siders the exchange effects of all orders, but neg
lects the quantum corrections. The more rigorous 
treatment of the quantum effects with the help of 
the Weizsacker equation4•5 involves considerable 
methodological difficulties and leads to arduous 
numerical calculations. 

The TF model with quantum and exchange cor
rections (abbreviated TFC model) has been con
sidered by a number of authors.5- 8 In the present 
paper we calculate corrections to the potential, 
the energy, and the chemical potential of the atom 
within the framework of this model and present 
the numerical results of these calculations for 
the compressed atom at zero absolute tempera
ture. 

2. THE ATOM AT ARBITRARY TEMPERATURES 

The operator corresponding to the single par
ticle density matrix for a nondegenerate Fermi 
gas has the form 

r; (r, p) = 2 (2;rnr3 [ 1 + exp {(H- [L) I kT} r\ (1) 

where H is the Hamiltonian of the electron in the 
Hartree-Fock field. The magnitude of the chemi
cal potential J.! is determined by the total energy 
of the system, which, according to the self-con-

sistent field approximation, is equal to 

E = ~ fl~':cip dr- ~ ~ p (r1) p (r2) I r 1 - r 2 :-1 dr1 dr2. (2) 

Kirzhnits5 has shown that expression (1) satisfies 
the system of TFD equations written in operator 
form 

l1q; (r) = - 4;rZeo (r) + 4;re ~ p (H) dp, 

fi = p212m- eq; (r)- 2rr'n2e2 ~ p (if') i p- p' :-2 dp'. (3) 

The zeroth approximation to this system is, of 
course, the TF equation.* Using the rules for 
the computation of a function of a sum of noncom
muting arguments, we can expand Eqs. ( 1) to 
(3) in powers ot n~ (see references 5 to 7) and 
obtain corrections of arbitrary order to the equa
tions of the TF model. 

We shall denote the quantum and exchange cor
rections of first order by the symbols 61 and 62, 

respectively. We introduce the dimensionless po
tential function of the TF model and the quantum 
and exchange corrections to it:t 

~(r) = [ecp(r) +~-tllkT, 

oi~ (r) = [e3;e( + o£:1.] I kT 

= (e I 3;-; V 2a0kT) [/;/, (~) o1£ + Ut (r)]. (4) 

The corrections to the potential satisfy the follow
ing equation and boundary conditions :8 

l1ui (r)- V32kT I ;r 2e2ag 1;1, (~) ut(r) = V32kT I r: 2e2ag 1¥; (;), 
(rut)r=o = 0, (dui / dr)r=r, = 0. (5) 

Here we use the following notation for the Dirac 
functions and their combinations: 

*Not the TFD equation, since the exchange term in the 
Hamiltonian is itself a correction of order 1i2 • 

tHere 8,; is the Kronecker symbol, which separates out 
the quantum correction. 
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::o 

!;, (;) ~~ \ 
xl?dx 

l -- exp (_X - ;) ' 
0 

'1'2 (;) = 6 \ u:;, (x)Fdx. 
,! 

Since we assume that the potential vanishes at 
the boundary of the atom in any approximation, it 
follows from (4) that the corrections to the chemi
cal potential of the atom and to the potential of the 
self-consistent field have the form 

o;;L c= 3:. V kT/ 2a0-{l;, (; (r,,)) 01; -:- tl{(r 0)}, (6) 

(r) = {; VliT;2ao u: '(; (r)) Ou --Lit (r)}- o,:;-. (7) 

The calculation of the correction to the energy 
leads to a divergent volume integral: as is known, 
one cannot compute the quantum correction of 
Weizsacker with the help of the quasi-classical 
electron density. However, the divergence is re
lated to the region near the nucleus which is not 
affected by the external conditions (temperature 
and pressure ) . The divergent terms therefore 
cancel out in the calculation of the difference of 
the energies of the atom under different external 
conditions. The remaining finite expression rep
resents the correction to the energy of excitation 
of the atom and has the following form: 

o,E = .~-. ~.~T Zui(O) v.~ V ..... ao 

+ f,;-3 (::r ~ [ -} u,J,,, (;) + 1¥1 (;)] dr + C (Z), (8) 
v 

where C ( Z ) is chosen such that the energy of 
the unexcited atom is zero. This still leaves the 
correction to the binding energy of the atom unde
termined. 

In the region where the electron density is 
nearly uniform we can obtain8 explicit expressions 
for the thermodynamical quantities in terms of the 
boundary conditions. Denoting the correction due 
to the non -uniformity by the symbol on, we find 
for the energy of the uniform distribution and the 
correction to it: 

3 

E0 = ZkTI.,,(C,0 )1 f,;,(C,0 ), on£= -3}1-3futZ2e2 I !OV'1•, 

o1E =- (Ze I 3:rt) V kT I 2a0 [ f 1¥; (~0) / 1:1, (~0) 

- '¥, (C,0 ) If,;, (!;0)], 

where ~ 0 is determined by the equation 

ZIV = (2kT I e2a0 ) 'i, f,/, ( C,0 ) I 2:rt2 • 

3. THE COLD ATOM 

(9) 

(9a) 

For the description of the compressed atom at 
zero absolute temperature we go to the limit T - 0 

in Eqs. (5) to (8) (for J-1. > 0 ), using the asymptotic 
Dirac functions: 

/k(C,)-> c,k+1/(k+1), '¥1(C,)~~ !;2, 
W2 (C,)~3C,2 for ;~ + oo. (10) 

Since the asymptotic functions ~i of (10) differ 
only by numerical factors, the quantum and ex
change corrections also differ only by the numer
ical factor % at absolute zero. For simplicity 
we shall consider in the following only the sum of 
the quantum and exchange corrections of first order. 

For a complete description of the TFC model we 
must use the equations of the TF model1•2 and the 
expression for the corrections to the pressure. 8 

For convenience of calculation we make the follow
ing change of coordinates: 

x = r! r 0 , <1> (x)l x = ;(r)l C,(r0), 

(11) 

and go to the limit as above. The equations and 
boundary conditions for the dimensionless poten
tial then take the form 

<t>" (x) = a<t>'1• (x)!Vx, <t> (1) = <t>' Ol = 1. 

<1>(0)- <1>0 = Ze2 I T 0fl, 
::l y" (x) - 2 a V <l> (x) I x~ (x) = ~~ (x), 

y (1) = 4' (1) = 1, 4 (0) = 0, 

where 

(12) 

~ = 111X V p. / kT I [ui (r0 ) + U2 (r0 )J, x = (9:t 2 I 128)'1•. 

Transforming expression (8) with the help of equa
tions analogous to the virial theorem in the TF 
model, we obtain the following expressions for the 
thermodynamical quantities and the corrections 
to them: 

Zv _ 4n (xa0) 3 2 <D 
- 3 IX 0' 

P _ e2 ( <D2)-'f, 
z"l• - iOn (xa0) 4 oc 0 ' 

E e• [ 1 a'f, ( 2 , 3 <Do!D~)J --y:r. = :><.ao Coo 1 !D'/, 35 1 y -a- , 
0 

(13) 

where Coo and oC 00 are chosen such that the en
ergy and its correction become zero for an infi
nite atom. The potential and its correction are 
obtained from the formulas 
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zv.k I z-''!.P, 1-z-'!.sP. I z-'I•E. I -z-'I•&E, 
dyne/em2 dyne/em2 erg/atom erg/atom 

z-•;,IJ., 
erg/atom 

-z-•/,siJ.. 
eq~/atom 

.21078 (-3) .30412 (20) .55306 (18) .93547 (-8) .33829 (-9) .16304 (-7) .40323 (-9) 

.16483 (-2) . 95892 (18) .35577 (17) .22487 .16484 .40907 (-8) .20328 

.62812 .99762 (17) .59598 (16) .86759 (-9) .I 0162 .16545 .13021 

.24391 (-1) . 98523 (16) . 96937 (15) .31962 .60883 (-10) .65539 (-9) .82860 (-10 

.10168 (0) .83186 (15) .14178 .10592 .34219 .24384 .51432 

.26456 .15396 .38603 (14) .48388 (-10) .22544 .12418 .37294 

.41652 .68308 (14) .20691 .32843 .18279 .89717 (--10) .31984 

.12101 (1) . 97281 (13) .46674 (13) .12584 .10759 .41143 .22194 
_23973 .26900 .17537 .65214 (-11) .74094 (-11) .24603 .17472 
.47555 . 71642 (12) .64075 (12) .32458 .49412 .14493 .13671 
.96270 .17573 .21958 .15111 .31355 .82608 (-11) .10536 
.13114 (2) .93461 (11) .13558 .I 0637 .25350 .64171 .93704 (-11 
.18739 .44521 . 76876 (11) . 70018 (-12) .19622 .47699 .81629 
.26012 ·22241 .45150 .47082 .15345 .36136 .71718 
.35927 .11094 .26452 .31471 .11924 .27360 .62966 
.50824 .51816 (10) .14712 .20138 .89897 (-12) .20178 .54579 
.71602 .24067 .81334 (10) .12772 .67196 .14848 .47232 
.10150 (3) .10857 .43883 . 79167 (-13) .49348 .10798 .40623 
.14862 .44678 (9) .22005 .46147 .34716 .75705 (-12) .34310 
.20701 .20338 .11914 .28453 .25264 .55259 .29519 
.28687 . 92408 (8) .63314 (9) .17445 .18273 .40306 .25373 
.41240 .37795 .31923 .99690 (-14) .12582 .28188 .21358 

.18841 .17576 .61577 .13804 .14472 .52758 .82059 (-13) 
.81519 .67390 (7) .82305 (8) .33418 .60277 .14142 .15292 
.11248 (4) .29238 .42611 .19569 .41916 .10127 .12997 
.15950 .11650 .20604 .10808 .27959 .70084 (-13) .10859 
.22919 .44137 (6) .95619 (7) .05754 .18152 .47534 . 89791 ( -12) 
-31529 .18559 .48144 .03266 .12297 .33613 . 75746 
.42552 .81345 (5) .25034 .01901 .84621 (-14) .24167 .64401 
.86918 .10973 .51008 (6) .00505 .33762 .10845 .43378 
.16984 (5) .16014 (4) .11035 .00140 .13790 .50220 (-14) .29640 
39330 .13569 (3) .15450 (5) .00026 .04310 .18711 .18164 
23448 (6) .60040 (0) .20455 (3) .00001 .00321 .21402 (-15) .61776 (-13) 
90408 .88368 (-2) . 70377 (1) .00000 .00041 .39591 (-16) .26638 
44188 (7) .56275 (-4) .12372 (0) .00000 .00004 .52385(-17) ·97086(-14) 

The numbers in the table represent decimal fractions to be multiplied by the 
power of ten indicated in parentheses) 

et' ( r) = f1 [<I> (x) I x- 1], 

ebcp (r) = z-•,.1-1 [b<P (x) I X- b<f> (1)], 

(a!I>2 )''• [ 11 J 
b<P (x) = ti-- V x<f> (x) + T 4 (x) • (14) 

Expanding (12) in a power series in the param
eter 0!, we find the asymptotic expressions for 
the case of high compression: 

<I> (x) = x +a(+ x3 - + x+ T) + O(a2), 

( 
3 3 

a= /o Jl3Z/xa0)( 1- r0 V3Z! 20xa0+ .. .). 
~ = -foc ( 1- ~a)+ O(a3). (15) 

The asymptotic values of the thermodynamic quan
tities will not be quoted here; they are easy to ob
tain by substituting (15) in (13). 

4. SOLUTION OF THE EQUATIONS 

It is known that the TF equation has a universal 
form. If we take ZV and z-4/3 T for the unknown 
variables and z- 10/ 3 P, z- 7/ 3 E, and z- 4/ 3 11- for 
the functions of these variables, the equations do 
not contain Z in any other fashion than the one in-

dicated. If we further introduce the functions 
z-813 oP, z- 5/ 3 oE, and z-213 011- this universality 
is extended to the equations for the corrections of 
first order. This circumstance greatly facilitates 
the numerical calculations, since any solution of 
the TFC equations can be used for all elements; 
we recall that the TFD equation or the Weizsacker 
equation have to be solved separately for each ele
ment. 

The numerical integration of (12) was performed 
on the computer "Strela." The computations were 
carried up to values of the compression for which 
the relations (15) are applicable with an accuracy 
of 10- 3 to 10-4• The calculations for very rarefied 
matter (up to r 0z1/ 3 ~ IOOA) led to the following 
values for the constants C00 and oC 00 : 

Ceo= 0.6806018678, bCco = -0.615434693. 

The calculated thermodynamical quantities are 
given in the table.* The tables listing the shapes 
of the potentials for the various values of the ra
dius of the atom are omitted for lack of space. 

*Our values for the charge of the electron and the Bohr 
radius, e = 4.80286 x 10-•o cgs esu and a0 = 0.529172 A, are 
somewhat different from those used by Latter! 
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FIG. 1 

FIG. 2 

5. DISCUSSION OF THE RESULTS 

Let us compare the results of our calculations 
with the experimental data of Al'tshuler et al. 9 on 
the compressibility of iron. Figures 1 and 2 show 
the theoretical and experimental curves for the 
pressure and the energy* (P is in dyne/cm2 and 
E in erg/g). It is seen that the TFC model re
produces the experimental curves better than the 
TF and TFD models. The Weizsacker model 
gives much lower pressures;tthis is due to the 
fact that the coefficient of the correction term 
used by Gombas is ten times too large (see ref
erence 5). The dotted curves represent the ex
trapolation of the experimental curves into the 

*The energy in the TFC model was reckoned from the mini
mum (see below), which is equal to -5.488 ev/atom relative to 
the energy of the cold infinite atom. 

tThe corresponding curves are not shown in Figs. 1 and 2, 
since the points obtained by Gombas• lie beyond the limits of 
the graphs. 

region where the correction to the pressure cal
culated by the TF model amounts to 30% (arrow 
in Fig. 1). These extrapolated curves, which go 
over into the curves of the TFC model, apparently 
describe (with an accuracy of 10 to 15%) the 
compressibility of iron at pressures which have 
not yet been attained by experiment.* 

In the region of normal densities where it is 
impossible to neglect the shell structure of the 
atom and where the approximation of spherical 
cells and the self-consistent field method become 
inaccurate, the TFC model is, in general, not 
applicable. However, in contrast to the TF model, 
the TFC model does describe qualitatively some 
properties of solid matter, so that the discussion 
below has some significance. 

The corrections to the thermodynamical quan
tities are negative and go to zero more slowly for 
V - oo than the uncorrected quantities. Therefore 
the corrected pressure becomes zero for some fi
nite density p0( Z ). By virtue of the thermodynam
ical relation P = - ( BE/av )T=o the energy has a 
minimum for this density;t the value of this mini

Po'g/cm• 

lw 

15 

10 

z 
25 700 

FIG. 3 

*It was pointed out by Ya. B. Zel'dovich that the occur
rence of a phase transition in the unknown region may compli
cate the picture. 

tSince the dependence of the corrections on Z is different 
from that of the uncorrected quantities, the binding energy and 
the density of the uncompressed matter are obtained separately 
for each element from the data of the table. 
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mum gives the binding energy of solid matter in 
our model. 

Figure 3 shows the experimental and theoret
ical dependence of the density of the uncompressed 
matter on the charge of the nucleus. The TFC 
model, in which the dependence of the physical 
quantities on Z is monotonic, is not adequate for 
the explanation of the behavior of the experimental 
curves. It does, however, describe the average de
pendence of the density on the charge better than 
the TFD model. The reasons for the sharp dis
agreement between experiment and the results of 
the Weizsacker model (point W in the figure) 
were discussed earlier. 

In conclusion we note that the numerical calcu
lations of Kompaneets and Pavlovskil,6 who ob
tained the correction to the potential for the infi
nite cold atom, are not sufficiently accurate for 
distances from the nucleus larger than r z1/ 3 = 2 A. 
Furthermore, reference 6 contains a printing er
ror: the quantity shown in the figure is not y (x), 
as indicated in the paper, but y (x)/8 (6rr)2/3. 

I express my sincere gratitude to A. A. Samar
skit and V. Ya. Gol'din for proposing this problem 
and for constant attention to this work, to D. A. 
Kirzhnits for valuable comments, and to I. A. 

Govorukhina for carrying out many of the numer
ical calculations. 
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