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The dipole moment p of a hydrogen atom in the ground state, induced by a positive charge e, 
is considered as a function of the distance between the charge and the atomic nucleus (Fig. 2). 
The proton and the hydrogen atom in this state do not form a stable system. The stability of 
the proton-electron-positron quasimolecule is investigated with the aid of the solution thus 
obtained. 

1. THE HYDROGEN A TOM IN THE FIELD OF A 
POINT CHARGE e 

THE appearance of a dipole moment in the hydro­
gen atom is considered by us as a problem involv­
ing the motion of an electron in the field of two 
fixed positive charges e. Let the nucleus of the 
hydrogen atom a be fixed at the origin of the co­
ordinate system, and let the charge e be at a 
point b a distance R along the z axis. We denote 
by ra and rb the respective distances from the 
electron to these points. It is now necessary to 
find a solution of the Schrodinger equation with 
potential 

which corresponds to the ground state of the hydro­
gen atom polarized by a charge e located at a dis­
tance R from it. 

The given problem is solved by the same meth­
ods used for the well-known problem of two centers 
in the case of the hydrogen molecule. Only the 
boundary conditions change for R - oo ; whereas 
the wave function of the ionized molecule of hydro­
gen changes, as R-oo, into a symmetric com­
bination of hydrogen atoms at the points a and b, 
in our case the wave function goes over into a hy­
drogen atom with the nucleus at the point a. If we 
introduce the elliptic coordinates 

~o = (ra + rb)IR., 1j0 = (r,.- rb)l R.. (1) 

then we can separate the variables in the Schrod­
inger equation with potential U 1: 

1¥ (ra, rb} = X (~o) Y (1jo}, (2) 

d~J<e~- I) ~~ J + [- t- 21;~ + 2R.f;o +A] X= 0, (2a) 

d~o [(1j~-l) :~ J + [- A2~ +A] Y = 0, (2b) 

where A.= R/TET/2, while A denotes the sepa­
ration constant.1 

Here and below, the energy E is expressed in 
Rydbergs ( 1 Ry = e 2 I 2a0 ) , the distance R in Bohr 
radii, a0, and the electron charge e is set equal 
to unity. 

Let us fix the boundary conditions as R - oo . 
If the electron remains with the charge a, then 
upon removal of the point b to infinity along the 
z axis, the elliptical coordinates of (1) go over 
into parabolic coordinates 

~0 __,. p./ R. + 1 ' l"lo-v/R.-1, 

where J.l = ra - za, v = ra + za. Equations (2a) 
and (2b) transform into the equations for a hydro­
gen atom at the point a in parabolic coordinates. 
In order that the solution 'l1 = X ( Jl ) Y ( v ) , corre-
3ponding to the ground state of the hydrogen atom, 
exist for R - oo, it is necessary to require that 

lim E(R.) = - 1 or li.m t.(R.) = R./2; 
R~oc R4oo 

lim A (R.) =IE IR.214-R. 
R-+eo 

Then we get the limiting values for the functions 
X and Y at large R: 

(3) 

i.e., 'l! transforms into the function of an isolated 
hydrogen atom: 

lim 'Y (~o• 7Jo) = e-1.(~,+~,) = e-ra . 
R-+oo 

For R- 0, Eqs. (2) go over into the equation 
of a helium atom in spherical coordinates, 1 while 
the parameter A takes on one of the values A 
= -l (l+ 1 ). For the ground state l = 0, we have 
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A ( 0) = 0. Such a definition of the limits for R 
equal to oo and 0 is based on the well-known 
theorem that, for an adiabatic change of the pa­
rameters of the system ( R changes from oo to 
zero ) , the number of its quantum state (energy 
level) does not change. 2 

We now turn to Eqs. (2), which we shall solve 
under the boundary conditions (3). Both Eqs. (2a) 
and (2b) have the same characteristic equation 
relative to the singular points + 1 and - 1, one 
multiple root of which is p = 0. Consequently, for 
example at the point + 1, each equation has one 
finite solution and one that is logarithmically di­
vergent. The boundary conditions at the other 
point in each of the equations are different: X ( ~ 0 ) 

is bounded in the region 1 :::: ~ 0 < oo and Y ( 1Jo ) 
in the region - 1 :::: 7Jo :::: + 1. T~e usual method of 
solution of Eqs. (2) is the following: initially, for 
a given A., one finds a value of the parameter 
A (A.) for which the mentioned solution Y ( 1Jo) 
exists [we note that Eq. (2b) does not depend ex­
plicitly on R ] . When the parameter A is found 
as a function of A., it is substituted in Eq. (2a), 
and then such an R is sought for which the solu­
tion X ( ~ 0 ) exists, bounded in the region 1 :::: ~ 0 
:::: oo • The energy is then determined from the 
condition A.2 =- ER2/4. 

Whereas only even or odd solutions of Eq. (2b) 
are obtained in the problem of the hydrogen mole­
cule, Y ( 1Jo) in our case has no symmetry with 
respect to 7Jo· Therefore it is necessary to use 
the method of solution of the spheroidal equation 
(2b), developed by Wilson3 for the general case. 
For this purpose, we make the substitution 

X=r0 -l, p. = A-/, (2 +A) 

in Eq. (2b). A solution that is finite at the point 
x = 0 ( 7Jo = + 1 ) is sought in the form of a series 

00 

y (x) = ~ amxm, 
m=O 

which leads to the recurrence relation 

Gm+t = - Um (p., A, m) Urn + Vm (p., 1-, m) Um-r. (4) 

The eigenvalue Jl is then determined from the con­
dition that the solution must be finite at the other 
singular point x = -2 ( 1Jo = -1 ). 

The coefficients am are determined from the 
infinite set of linear homogeneous equations (4), 
so that the vanishing of the determinant is neces­
sary. It has been shown3•4 that the condition of the 
vanishing of the infinite determinant of the system 
(4) is equivalent to the vanishing of the following 
infinite continued fraction: 

vl 0 = U0 + ---"----
ul~- __ v} __ 

' Va uz,--.-
U:J -~ ••• 

(5) 

The elements of the continued fraction Urn and vm 
are the coefficients of the system of equations (4), 
while u0 = Ji./2. Wilson3 proposed to find the values 
of Jli (A.) for which the solutions Y ( 1Jo) exist, 
bounded at the point 1Jo = -1, as roots of Eq. (5). 
This is possible only in the case of the convergence 
of the infinite continued fraction (5). The fraction 
converges4•3 in the case when just those roots of 
Jli(A) of the equation .6.(1, Urn, -vm) = 0 which 
correspond to the indicated solutions Y ( 1Jo) are 
substituted in the functions urn ( Jl, A., m ) and 
vm(Jl, A., m). 

We shall seek the root Jl (A.) which vanishes 
for A. = 0. It corresponds to a state with the low­
est energy level.1 In the case of small A., we can 
find for it a power series in A. by making use of 
the method of successive approximations suggested 
by Wilson: 3 

- 2) 2 ) 2 + 43 \ 4 .+--
[.1. - - '- 3 ' 3. 53 ,.. . ' ••• 

Then the following series holds for A (A.) in the 
case of small A.: 

A (\ ) - 1 ) 2 I . 43 ) 4 44 ) 5 ' ,, - 3 ' T 3. 53 ' + 34. 5• ' T .. • (6) 

For A.- 0, the function A (A.) coincides with the 
same parameter for the hydrogen molecule;3 there, 
the series contains only even powers of A., and the 
first term is A.2/3. 

The values of the root Jl (A. ) for large A. are 
found from the finite continued fraction made up 
of the first few elements urn and vm. Their 
number is larger the larger the value of A.. To 
calculate the continued fraction, it is convenient 
to use the results set forth in the monograph by 
Perron;4 the fraction (5) is classified as "limiting 
periodic." 

After finding the values of A for a number of 
values of A., we find the value of R for each pair 
of numbers A and A. as eigenvalues of (2a). Tel­
ler1 suggested a variational principle for this prob­
lem, in which the test function X ( ~ 0 ) = exp (- A.~o) 
is a sufficiently good approximation. In the prob­
lem for the conditional extremum 

00 

o/ = o ~ {(~~- 1) X' 2 + ()- 2~~- A) X 2} d~0 , 
1 

the quantity R is a Lagrange multiplier, which is 
found from the condition 
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R ~= min {1 I~ 2;0X2d~o}. 
It is useful to write the wave function Y ( 7Jo) in 
the form 

where y (R) =A. (R) - o (R), limR-oo o = 0. 
Then y ( R) is determined from the condition of 
the minimum of the functional 

+1 
S (j) = ~ {{'YJ~ -1) Y' 2 + (1-2'flg- A) Y2} d"flu· 

-1 

Since A (A. ) is already determined, this is a 
problem of an absolute extremum. For large A., 
the derivative dS/ dy vanishes if A = A. 2 - 2A. + 1 
(here, y =A.). The condition oS = 0 is satisfied 
for small A. also, if A (A.) is taken from the 
series (6). Such a simplified expression 

"If (~0 , "f)~) = exp (- t..;o- l'flo) 

is similar to the wave function of the ionized hy­
drogen molecule obtained by Guill em in and Zener, 5 

also from a variational principle. For large R, it 
is convenient to write it in the form "IJl = e-ra e07Jo. 
The result is that the spherically symmetric elec­
tron shell of the hydrogen atom is somewhat elon­
gated in the direction of large 7Jo• i.e., toward the 
charge +e. 

-O,!J 
-0,.90 

-D..9J J 4 5 '6 7 81? 
-!,DO ~1;-22";;:::::::;':~-:;-~-::;-~-;::-~-:;-
-l,DJ ,.,.. 

1/znfi -l,!O r 

FIG. 1 

The solid line in Fig. 1 gives the curve of the 
electron energy E = - 4A. 2/R2 combined with the 
energy of separation of the charge e from the 
nucleus of the atom, i.e., the energy E + 2/R. The 
resultant curve does not form a deep potential 
well; its maximum depth of 0.03 is reached for 
R = 4; the system goes over into the much deeper 
level of the hydrogen molecule only if the proton 
is entirely removed from the atom. 

In order to find the dipole moment of the hydro­
gen atom induced by the charge e, we write down 
the normalized function "IJI. Here it is convenient 
to use the coordinates 

(7) 

and introduce the notation used in reference 5: 

r:x = 21-/ R, 

Normalization of the wave function depends on R: 

"If(;, T,) = C (R) f (R, t "tJ), 

f (R, ~. 'Y)) = exp (-ex~/ 2- ~"f)/ 2). (8) 

The condition of normalization in the coordinates 
(7) has the form 

co +R 
J(R)=+~ d'; ~ d·~(;2-YJ2)f2. 

R _:_R (9) 

The function J ( R) increases monotonically from 
J ( 0) = ! to J ( oo) = 4. Then Eq. (9) determines 
the normalizing factor C ( R). The dipole moment 
of the hydrogen atom in the state (8) is determined 
as 

where (} is the angle between ra and R. Inte­
grating over d~ and d7), we get the dipole mo­
ment p ( R) as a function of the distance between 
the charge e and the nucleus of the atom. From 
the graph of p ( R) in Fig. 2, it is seen that this 
dipole moment is a short-range effect. In Fig. 1, 
the broken line shows the energy of interaction of 
the dipole p and the charge e, equal to 2p/R2• 

Beginning with R = 4, this energy is very close 
to the curve E + 2/R. 

2. STABILITY OF THE PROTON-ELECTRON­
POSITRON QUASIMOLECULE 

By using the given solution, we shall try to find 
such a state of the proton, electron and positron 
system (pe-e+), which should dissociate into a 
positron and a hydrogen atom. For this purpose, 
we use the variational method employed earlier 
by the author6 for the calculation of such a state 
of the system (pe-e+), which dissociates into a 
proton and a positronium atom: p + ( e + e- ) . Here 
also, the system is treated in the adiabatic approx­
imation, with a fixed positron, but now its state is 
determined by the wave function (8), and not by the 
function of the hydrogen molecule. We seek a 
wave function of the system (pe-e+) in the form 

4 (r, ;, 'f]) = ct>(r)F(r, ;, 'f]). 

where F ( r, ~, 1J ) corresponds to the function 
'll ( ~, 1J ) , which is determined by means of (8), 

-p 

0.3~ 0,2 

OJ 
I 

1 2 J 4 J 6 7 8K 

FIG. 2 

(10) 
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only the parameter R is replaced by the vari­
able r - the coordinate of the positron. The 
function F ( r, ~, 11 ) is normalized to unity in the 
coordinates ~. 1J, as is shown in (9). The wave 
function of the positron, <P ( r), remains arbi­
trary; its value must be determined from the con­
dition of the minimum of the functional 

where the Lagrangian function of the system 
(pe-e+) and the element of volume dT in the 
coordinates r, ~. 11 are given in reference 6. 
Substituting the function (10) in this integral, and 
integrating over the coordinates ~ and 1J, we 
arrive at the isoperimetric variational problem 

00 00 

oS = o (' ( d:' ~D + U (r) CD*<D J r~dr, \ <D*<Dr 2 dr = 1 j \ r r , ~ (ll) 

by the same means as previously. 6 Here, the po­
tential U ( r) is a function of r, expressed both 
directly in terms of r and also by a ( r ) and 
{3(r); 

U (r) = (~ + a2 + 5~2- 2o:~)\ _L __ 1_ (~ _lJ_ _~_ d~ _l!_)2 (r J) 
r 4 ' 4r J dr a a ' dr a~ 

- (_I_ _t1!_) 2 + ~ e-•r f1(r --1-- __1_ \(a" -[3"- 2) sinh~r 
2J dr rJ ap ' a; 2a ' 

a - [3 [ da ( r2 , 3r 3 ~2 1 r . J \ 
+ -4- dr aT a2 +-as+ 2~ 1 a~+ ct2 i1) 

X (cosh Rr- sinhpr) + ~ (r + __!__) [(_3_ _L _l_) 1: r pr dr a a~ 1 ,B 2 

. ( h R sinh3r) ( r r) . h ," Tjl (12) /, cos t>r- -¢--- - a:+ T sm ~'JJJ · 

The function J ( R ) is determined by Eq. (9). For 
r- 0, the potential U (r) increases according 
to Coulomb's law. Taking it into account that 
a ( oo) = {3 ( oo) = 1, we find the limit at infinity: 

limU=-1, 
r-+co 

toward which U ( r) tends according to the expo­
nential law re -br. 

u 
-0.2 

-IJ.J 
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FIG. 3 

The variational problem (11) corresponds to 
the Schrodinger equation with the potential energy 
(12), and its Lagrangian multiplier corresponds 
to the eigenvalue of the energy En. The potential 
(12) is plotted in Fig. 3 (curve 1). The maximum 
depth of U ( r) is equal to -1.05 and is reached 
at r = 4. However, the "free energy" amounts to 
- 0.05. In the same drawing, we have plotted the 
curve (term) for the state of the system (pe-p+) 
which we found earlier (curve 2), which dissoci­
ates into a proton and a positronium atom. 6 This 
curve has the limit - ~ for r - oo, and a depth 
of the potential well equal to - 0.26. The depth 
of the potential well, - 0.05, of the new term (12) 
is insufficient for the existence of stationary 
states of positronium. All attempts at changing 
a ( r) and {3 ( r) arbitrarily (variation) have 
failed to make any appreciable increase in this 
depth. Therefore, although the application of the 
variational principle still does not prove the ab­
sence of stationary states, it is nevertheless very 
probable that there are none. The positron could 
be kept in the potential well (12) if its mass were 
four times greater. In order to find the energy 
of the system (pe-e+), Ore7 took the wave func­
tion of the ionized hydrogen molecule H2, and 
then decreased the mass of one of its protons. 
By a variational method, he found that this system 
would exist had the mass of the proton amounted 
to 4.5 m (m =mass of electron). The results ob­
tained by us furnish a basis for assuming that this 
result of Ore is final. Thus, it is necessary to re­
gard the lowest state of the system (pe-e+) as 
the state found earlier7 with energy E = -0.563. 
This state is stable, inasmuch as the new term 
(12) does not overlap the first, i.e., there is no 
predissociation. 

In conclusion, the author expresses his deep 
gratitude to his supervisor, Prof. A. A. Sokolov, 
and also to Prof. V. I. Gol'danskil. 
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