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Coulomb scattering of charges in a strong magnetic field, when the impact parameter is 
much greater than the Larmor radius, is considered. The solution of the problem indicates 
that the collisions cannot change the plasma electric (ion) distribution function, which is 
symmetric with respect to the velocity component transverse to the magnetic field. 

As is well known, a sufficiently strong magnetic 
field can affect the process. of charge collisions in 
a plasma. This problem was discussed by E. 
Lifshitz1 on the basis of the equation of Landau, 
and by Belyaev2•3 on the basis of the equation of 
Bogolyubov. We want to demonstrate a somewhat 
different, rather graphic approach to the problem 
under discussion. At the basis of this approach 
lie very well-known representations of the drift 
of Larmor loops in crossed fields. In the present 
research, the problem of two charged particles 
is considered. 

Thus, we consider two charges interacting ac­
cording to Coulomb's law and located in a mag­
netic field. The magnetic field will be considered 
to be homogeneous and constant in time. More­
over, we shall assume that it is strong. This 
means that the two conditions 

(1) 

are satisfied, where w is the velocity component 
of the charge transverse to the magnetic field, 
PL is the Larmor radius, R is the impact 
parameter. The equations of motion of the charges 
have the form 

•• er • 
m1x1 = c [x1xH] +e1e2 F, F = xj x3, 

•• e. • (2) m2X2 = -;;-[X2xH]-e1 e2 F, X=X1 -X2• 

Here F is the strength of the Coulomb interaction 
of two unit positive charges. Under the conditions 
( 1 ) , we can simply ( 2 ) , making use of the method 
of rapidly changing phase shift.4 

As a result, we get 

w1 = w. = o, 
· _c(e1 +e•) [F H] 
Xj_- H• J.X, 

• _ c(m1 e2-m2e1) [F H] 
Y..L- H 2 (m1 --!-m2) j_X 

y~ = 0, 

(3) 

(4) 

(5) 

where the index 3 denotes the coordinate axis par­
allel to the magnetic field, J-1- is the reduced mass 
of the charges. Equations (3) - (5) have a simple 
meaning. Each charge rotates around the mag­
netic field in a Larmor ring with speed wi ( i 
= 1, 2 ) . The centers of the Larmor rings (in 
the case of a strong magnetic field, it is the 
custom to call them guiding centers ) move 
along, and perpendicular to, the magnetic field. 
Equations (4) describe the motion of the guiding 
centers perpendicular to the field, while Eqs. 
(5), the motion along the field. As in (2), x = x1 

- x2, but now x1 and x2 refer to the guiding 
centers and not the charge; y = (m1x1 

+ m2x2 )/ ( m 1 + m 2) is the center of mass of 
the guiding centers. We note that Eqs. (3) - (5) 
could be written down directly from elemen­
tary considerations on the drift velocity of the 
guiding center in crossed fields. 

We proceed to analysis of Eqs. (3)- (5). 
First of all, according to (3), the velocities of 
the Larmor rotation of the charges in the scat­
tering process do not change. Further, from 
the first of Eqs. (4), we find x1 = R = const, 
i.e., the projection of the distance between the 
guiding centers on the plane perpendicular to 
the magnetic field is a constant quantity. Fi­
nally, an interesting integral of the motion 
follows from ( 4): the "electric" center of 
gravity of the guiding centers: 

z = (e1x1 + e.x2)/(el + e2) = canst. 

We obtain the following picture of·the motion 
of the guiding centers. Each guiding center 
moves along a helix lying on the surface of a 
right circular cylinder. The axis of the cylinder 
is parallel to the magnetic field and always 
passes through the electric center of gravity. 
The displacements of the guiding centers as a 
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result of scattering can be found from the fol­
lowing formulas: 

Llx<1> = _e_• - Llx1. Llx<1.2> = - _el_ Llx , , 
1. e1 + e2 ' e1 + ez -L 

Llx1. = _!_ [Hx·x<o>] sin Llm- 2x<o>sin2 <l<p H j_ T l_ 2' 

00 2 

.1. =-c(et+ez) \ (1+_2)-'/•dt. (6) 
'P HR" j R2 

-oo 

Here the index zero denotes the initial instant of 
time. In order to compute D.cp- the angle of turn­
ing of the vector x 1 as the result of scattering­
it is necessary to solve the preliminary equation 
(5). As usual, we obtain the energy integral 

f!.U2 I 2 + e1e2 (R.2 -r x~)'lz = const = fl-U~ I 2, (7) 

where u = x3• Two important consequences follow 
from (7). In the first place, unlike charges travel 
alongside one another, without changing their ve­
locities. In the second place, for like charges 
there exists a critical impact parameter Rc 
= 2e1ed J.LU ~. For R > Rc, the identical charges 
travel alongside one another, similar to the un­
like charges, without changing their speeds. If 
now R < Rc, then the charges approach each 
other up to some minimum distance, after which 
they recoil backwards, like elastic spheres in a 
head-on collision. 

We shall now apply these results to the case 
of a plasma. We obtain the following important 
conclusion: if, at a certain moment of time, the 
electron (or ion) distribution function is an even 
function of the transverse (to the magnetic field) 
velocity, an arbitrary function of the longitudinal 
velocity, and is homogeneous in space, then it does 
not change with time. The constancy of the distri­
bution with respect to the transverse velocities 

follows directly from (3). The constancy relative 
to the longitudinal velocity is somewhat more 
complicated. We shall consider electrons as an 
example. From what has been said above, it is 
clear that their distribution function can change 
only upon collisions with other electrons. But in 
the collision of two electrons moving along the 
field, they exchange velocities, since their masses 
are the same. In this case the distribution func­
tion cannot change. In order to make the latter 
circumstance clearer, we recall the Boltzmann 
collision integral. The integrand is proportional 
to the difference f ( u'1 ) f ( u2 ) - f ( ut> f ( u2 ) • If 
u'1 = u2, uz = u1, then the integral vanishes iden­
tically. We note that the conclusion which we 
have reached is in agreement with the result of 
Lifshitz and Belyaev on the problem of relaxa­
tion in a plasma: these authors showed that the 
collisions with an impact parameter larger than 
the Larmor radius make no contribution to the 
relaxation process. 

In conclusion, I take the opportunity to ex­
press my thanks to S. Temko and Yu. Klimon­
tovich for discussion of the research. 
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