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On the basis of Dzyaloshinskil' s ideas on the nature of weak ferromagnetism, resonance 
frequencies are calculated for rhombohedral weak ferromagnetic crystals of the a-Fe20 3 

and MnC03 type. Account is taken of the effect on the resonance of anisotropy in the basal 
plane, and the dependence of the resonance frequencies on the magnitude and direction of 
the magnetizing field is obtained. The theoretical formulas are compared with experimen­
tal data on a-Fe20 3• 

l. Magnetic resonance is the most direct method 
of studying the energy spectrum of magnetic crys­
tals. The peculiarities of the energy spectrum of 
weak ferromagnetics, which result from the pecu­
liar nature of weak ferromagnetism as a property 
of antiferromagnetic crystals conditional on a defi­
nite symmetry, are most evident in the conditions 
of magnetic resonance, and especially in the form 
of the dependence of the resonance frequencies on 
the magnitude and direction of the magnetizing 
field. Therefore it is of interest to study the con­
ditions of magnetic resonance in weak ferromag­
netics by means of the Hamiltonian proposed by 
Dzyaloshinski11 on the basis of symmetry consid­
derations, and to compare the results obtained 
with the existing experimental data. 

Since the only weak ferromagnetic for which 
there are experimental data on magnetic reso­
nance, a-Fe20 3, belongs to the rhombohedral 
syngony, all our calculations will relate to crys­
tals of this symmetry. Moreover the other best 
studied weak ferromagnetic, MnC03, 1•2 has a 
crystal lattice isomorphic with the a-Fe20 3 

lattice. 
The most complete experimental study of mag­

netic resonance in hematite was made by Kumagai 
et al. 3 In their work the dependence of resonance 
frequency on the magnitude and direction of the ex­
ternal field H was studied. In particular, it was 
shown that the usual Kittel resonance formula for 
a uniaxial ferromagnetic, with no account taken of 
anisotropy in the basal plane, agrees poorly with 
experimental data on the dependence of resonance 
frequency on the magnitude of a field H lying in 
the basal plane. Furthermore the experiment gave 
a very simple dependence of the magnitude of the 
resonance field He at a given frequency on the 

angle 9 between the direction of this field and the · 
trigonal axis [ 111] of the crystal: 

Ha = H.Ljsin6, (1) 

where H1 is the resonance field for 9 = 1r/2. 
There has been only one attempt at a theoret­

ical explanation of the experimental laws for reso­
nance in hematite. This attempt, by Shimizu, 4 is 
based on old ideas about weak ferromagnetism, 
such as the explanation based on the presence in 
an a-Fe20 3 crystal of fine ferromagnetic impuri­
ties. For this impurity ferromagnetism, Shimizu 
included in the anisotropy energy terms through 
the sixth order; in consequence, by choice of the 
numerical values of the three anisotropy constants 
that appeared in the theory, he succeeded in giving 
a satisfactory explanation of the experimental data 
of Kumagai et al. 3 in the range of fields in which 
there is saturation. However, description of the 
resonance phenomenon in hematite on the basis 
indicated came into contradiction with static meas­
urements of the magnetic properties of a-Fe20 3• 

In particular, it was found that the magnetic sus­
ceptibility in the direction of the trigonal axis 
should be appreciably larger than the susceptibil­
ity in the basal plane,* which was contrary to ex­
periment.5 

In the present work it will be shown that on the 
basis of the ideas developed by Dzyaloshinskil on 
the nature of weak ferromagnetism, it is possible 
to give a more natural explanation of the observed 
resonance properties of hematite; furthermore, 

*The susceptibility in the direction of the [111] axis 
should, according to Shimizu, be the resultant of the trans­
verse antiferromagnetic susceptibility and of a susceptibility 
connected with rotation of the spontaneous magnetic moment 
of the ferromagnetic impurities. 
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this explanation is in good agreement with the 
static measurements of magnetization and sus­
ceptibility of these crystals. 

2. We shall start with the following Hamiltonian, 
proposed by Dzyaloshinskii1 on the basis of symme­
try considerations for rhombohedral crystals of the 
a-Fe20 3 or MnC03 type: 

:Je = .!.. 8m2 + .!.. bm~ + .!.. at! + q (lxmy -lymx) 
2 2 2 

+ d (3/~ly -1!) lz + e (I~ -I~- 151!1! + 15/~l!) - m(~) 

Here the z axis is the trigonal axis, and the x 
axis is directed along one of the twofold axes in 
the (111) plane; m = (M1 + M2 )/2Mo, l = (M1- M2 )/ 
2M0, where M1 and M2 are the sublattice mag­
netizations, for which, in accordance with the basic 
assumptions of spin-wave theory, the relations Mf 
= M~ = M5 hold; or 

[2 + m2 = I, Im = 0. (3) 

The parameters that appear in (2) have the follow­
ing meanings: the exchange interaction parameter 
B > 0 leads to an antiferromagnetic arrangement 
of the sublattice magnetizations; the parameter 
q > 0 causes a disturbance of the strict antiparal­
lelism of the vectors M1 and M2, so that a weak 
spontaneous moment m ll appears; a and b 
are fourth- and sixth-order anisotropy constants, 
which for hematite satisfy the conditions *1 

a> 0, e + d2 I 4a > 0. 

The last term in (2) represents the energy of the 
magnet in the external field H = h/2M0• In the 
Hamiltonian (2) two fourth-order terms, not im­
portant for present purposes, have been omitted. 

3. The spectrum of characteristic oscillations 
of the vectors m and l for rhombohedral weak 
ferromagnetics, with neglect of anisotropy in the 
basal plane (i.e., for d = e = 0 ), was calculated 
by Borovik-Romanov2 and one of the authors6• 7 

for the case in which the field H lies in the basal 
plane. We shall first generalize the results of 
these works to the case of arbitrary direction of 
H. 

Let H make an angle e with the [ 111] axis. 
Then, upon neglect of the c and d terms in (2) 
and upon supposing (without loss of generality) 
that H lies in the xz plane, it is easy to find, 
from the condition of minimum 3C with attention 
to (3), the following equilibrium values of m and 
l (for h « B ) : 

*Under these conditions, in the equilibrium state (at 
H "' 0) m is directed along one of the twofold axes in the 
basal plane, and I is in the vertical plane perpendicular 
to it and makes a small angle with the basal plane. 

mxo = (q + hsin8)1 B, myo = 0, mzo = h cos 8 I (B +b), 

lxo=lzo=O, ly0 =lo=V1-m~zl. (4) 

By considering, furthermore, small uniform os­
cillations of m and l about the values m0 and 
Z0, we find in the usual way8•9 the characteristic 
frequencies of these oscillations: 

w1 = (&I 2M0) Vh sin 8 (q + h sin 8), (5) 

(JJ2 = (& 12M0 ) V Ba + q (q + h sin 8) + h2 cos28, (6) 

where y = ge/2mc is the magnetomechanical ratio 
( w = angular frequency). 

Oscillations of frequency w1 can be excited by 
radio waves of the centimeter range, and in fact 
they were observed in resonance experiments of 
Kumagai et al. 3 The second branch of the oscilla­
tions is related to much higher frequencies, of or­
der 1012 to 1013 cps. Observation of it requires 
larger fields, H "" 104 to 105 oe, and electromag­
netic radiation of wavelength A. "" 10-1 to 10-2 em. 

Solution of the resonance formula (5) for the 
external field H gives the experimentally estab­
lished relation (1), with 

-~:--:-=-:;:-:-----;--;---;-;; 

H j_ = V (Hn I 2)2 + (wl /r)2 - H n I 2, 

Hn = q /2Mo. (7) 

Thus even without allowance for anisotropy in 
the basal plane, the theory explains well the ob­
served dependence of the magnitude of the reso­
nance field H on its direction in a plane passing 
through the trigonal axis. However, the theoret­
ical relation (7) between the resonance field H1 
in the basal plane and the frequency w1 is poorly 
satisfied experimentally. Therefore, as has al­
ready been pointed out by Vonsovskil and Turov, 7 

here it is necessary to take account of anisotropy 
in the basal plane, described by the d and e 
terms in the Hamiltonian (2). This will be done 
below. 

4. Let the field H lie in the (111) plane and 
make an angle cp with the x axis. Then from the 
minimum condition for the complete Hamiltonian 
(2) in the range of fields h* < h « B, we find 

m0 j[H, mo=(q+h)IB, / 0 = V1-m~z 1, (8) 

lo lies in the plane perpendicular to H and makes 
with the (111) plane an angle 

o = (d I a)cos 3cp. (9) 

The field h* represents an effective anisotropy 
field in the basal plane; for h > h* saturation oc­
curs, in the sense that m0 II H. Approximately, 

h*1 = 368 (e + d2 I 4a) I q. (10) 
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For hematite in particular, as will be clear from 
the estimates made below, H* = h*/2M0 "' 102 oe. 

Knowing the equilibrium vectors m0 and Zo, 
we can calculate anew the spectrum of oscillations 
of the system about this equilibrium state. A very 
laborious calculation on the basis of the complete 
Hamiltonian (2), with attention to the relations (8) 
and (9), leads to the following two characteristic 
frequencies of oscillation for this case: 

w1 = (i I 2M0) Vh (h + q) + 36B (e + d2 I 4a) cos 6q;. (11) 

w2 = (i 1 2M0) 'V Ba + q (q +h)+ 9Bd + 6Becos 6q; , (12) 

From the formulas presented it is evident that the 
oscillations of frequency w1 are excited when the 
high-frequency field is perpendicular to the con­
stant field, and the oscillations of frequency w2 

when it is parallel to it. The presence of nondiag­
onal elements of the tensor Xa[3 shows that there 
is gyrotropy in the medium. 

It is possible to allow for a damping term in 
equation (13), for example in the form proposed 
by Landau and Lifshitz;10 this was done for ordi­
nary antiferromagnetics by Kaganov and Tsuker­
nik11 and also by Se1dov .12 If the width ~w of 
the resonance line is then determined from the 

As is clear from (12), the ~ourth- and sixth-order expressions obtained for Xa[3 = X'a[3 - ix'~{J• it 
anisotropy is practically w1thout effect on the sec- turns out that in weak ferromagnetics, just as in 
ond resonance frequency, since the d and e ter~s antiferromagnetics, 11 ~w is connected with the 
that occur in it are always small in comparison wtth dimensionless damping parameter a of the 
the term Ba. On the contrary, for the first reso- Landau-Lifshitz equation of motion by the follow-
nance frequency w1 the role of. anisot~opy in t.he ing relation: ~w Rj awE (wE = yB/2M0 is the 
basal plane can be appreciable 1f the fteld H lS so-called exchange frequency). 
not very large. The range of fields in which there we remark that the analogous relation for or-
is an effect of anisotropy of higher than second dinary ferromagnetics has the form ~w Rl YWo, 
order is, as a rule, appreciably larger for. the . where w0 is the resonance frequency. 13 Conse-
weakly ferromagnetic crystals under constderatwn quently, if the parameter a in antiferromagnetics 
than for ordinary ferromagnetics of the sam: s~m- (and in weak ferromagnetics ) had the same nature 
metry, since in the present case the role of antso- and the same order of magnitude as in ferromag­
tropy constants" is played not by the parameters d netics, then ~w would be about three orders of 
and e themselves, but by quantities proportional magnitude larger in the former than in the latter. 
to the geometric mean of e + d2/ 4a and of the ex- However, no great differences are observed be-
change parameter B. Consequently, in this re- tween the line widths for antiferromagnetics and 
spect weak ferromagnetics are similar to ordinary for ferromagnetics. Apparently the question of 
antiferromagnetics. the formal description of relaxation terms in the 

5. We now show under what conditions the oscil- equations of motion for antiferromagnetics and 
lations of frequencies Wt and W2 are excited. For weak ferromagnetics, and also of the nature of 
this purpose we find the susceptibility of a weak the line widths in them, needs to be subjected to 
ferromagnetic with respect to a high-frequency a special- and more detailed study.* 
magnetic field hw; we start with the equation of 6. we apply the theoretical results obtained 
motion for the magnetic moments M1 and M2 of to the discussion of the resonance properties of 
the sublattices: hematite. 3 It has already been indicated that the 

dMi 1 dt = 1 [MiXHi], j = I, 2. (13) theory explains well the experimentally estab-
lished formula (1) for the dependence of the mag­

Here the effective fields Hj acting on the sublat- nitude of the resonance field on its direction in a 
tices are found from the Hamiltonian (2) and the plane passing through the [111] axis. Kumagai 
relation Hj = - OOC/BMj. We shall consid.er that et al. 3 also investigated the relation between the 
the external field consists of a constant fteld H frequency w1 and a resonance field H lying in 
= Hx, directed along the x axis in the basal plane, the basal plane. We rewrite formula (11), which 
and of a high-frequency alternating field hw, whose should describe this relation, in the following 
amplitude is small in comparison with Hx. A stand- form: 
ard calculation gives the following expression for 
the high-frequency tensor susceptibility: 

X.u 0 0 / 
/.e1.[3 = 0 X11!1 Xyz ,. • 

0 Xzy Xzz 

XYY = (Mx / H x)wiJ ( <•Ji- bJ~), /.zz = f.oWi/ (<•>i - l!l2), 

Xyz= -xzu = ix0 (wfiH)wi;(w~-(t)2), 
Mx = z0 (Ho +H), Zo = 4M~1 / 8 

<v1 /i.= V If (If+ H0 ) + H;cos6cp, 
\ 

Hi= 368 (e + d2 / 4a); 4Mg. (14) 

Thus in the resonance formula (14) there occur 
two unknown parameterst H~ and Hn. The first 

*Cf. also the work of Dayhoff. 14 

tlf we do not include the g factor; this we set equal to 2. 
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H,koe 

0.5 lD U Z.D 
1/4, c.;."l 

of these can be estimated from the angular depend­
ence of the resonance field (i.e., the dependence 
of H on cp for given frequency wd, observed by 
Anderson et al. 15 and less precisely by Kumagai et 
al. 3 This estimate gives approximately H~ = 1450 
oe. A value of the parameter HD was selected by 
the criterion of best fit between theory and experi­
ment for the dependence of w1 on H. The figure 
shows the theoretical curve for the relation between 
1/A. = w1 /27rc and a resonance field H directed 
along the "easy axis" x [this corresponds to 
cos 6cp = 1 in formula (14)], for HD = 22,800 oe. 
The experimental data3 are plotted as points. As 
is evident from the figure, there is completely 
satisfactory agreement between theory and experi­
ment except in the low-field range. This was like­
wise the case in the work of Shimizu.4 Presumably, 
because of various crystal defects, the saturation 
of the magnetization assumed by us is not present 
at fields :S 2000 oe. In fact, from magnetization 
curves of hematite taken by other authors16 it is 
clear that saturation in the basal plane is not at­
tained at field strengths below 1000 to 2000 oe, 
whereas according to (10) saturation should occur 
for an ideal crystal at fields 

H- H* =Hi/ Hn ~ 100 oe. 

The important superiority of our theory is that, 
in contrast to the theory of Shimizu, it leads to 
good agreement of the resonance experiments with 
the results of static measurements of the sponta­
neous magnetization Ms and of the transverse 
antiferromagnetic susceptibility x of hematite. 
The fact is that from the statistics of the measure­
ments it is possible to determine in an independ­
ent way the field HD responsible for the weak fer­
romagnetism, 1•6 since HD = Ms /y. According to 
data of Neel and Pauthenet, 5 at room temperature 
Ms R:~ 0.4 cgs emu and x = 2 x 105; consequently 

HD R:~ 2 x 104 oe, which is very close to the value 
HD = 22,800 oe found above from resonance 
measurements.* 

For more detailed comparison of theory with 
experiment and for resolution of the still remain­
ing difficulties in the low-field range, it is neces­
sary to carry out experimental studies of both the 
magnetic and the resonance properties of hematite 
(or MnC03 ) on the same monocrystalline speci­
mens. 
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