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The equilibrium shape of atomic nuclei has been found for the case when the deformations 
are small and the external nucleons do not interact among themselves. 

IN the initial phases of the development of the teraction energy E as a function of the coordinates 
collective model of A. Bohr and Mottelson1 it was of the core {3 and y and then determine the values 
assumed that the equilibrium shape of deformed of {3 and y for which E ( {3, y) summed with the 
atomic nuclei has an axis of symmetry. With this potential energy of the free oscillations of the core, 
assumption it was possible to explain the proper- V ( (3) = !Cf32, has a minimum. These values of {3 

ties of the experimentally observed rotational ex- and y determine the equilibrium shape of the core 
citations.2 A number of calculations3•4 also con- completely. 
firmed this hypothesis. However, as new experi- To simplify the problem further, A. Bohr as-
mental data accumulated, there appeared in the sumed that the equilibrium shape of the core is 
rotational spectra of some nuclei certain anoma- axially symmetric. Then not only j, but also j t 
lies, which could not be accounted for by introduc- (the symmetry axis coincides with the t axis) 
ing simple corrections to the rotational states becomes an approximate integral of the motion, 
corresponding to an axially symmetric equilibrium and Hint is to be averaged over the state of the 
shape. These anomalies become understandable external nucleon with a definite angular momentum 
if their appearance is related to deviations of the j and definite projection j t on the t axis of the 
equilibrium shape from axial symmetry. 5•6 In this core. 
connection it becomes necessary to reconsider the Let j t = Q and <I> ( j, Q) be the wave function 
theoretical evidence for the existence of a symme- of the outer nucleon; then 
try axis in deformed nuclei which has up to now 
appeared in the literature. 

The problem of the equilibrium shape of a nu­
cleus with a single external nucleon has been in­
vestigated by A. Bohr. 3 The operator for the en­
ergy of the interaction of the external nucleon with 
the deformations of the core was chosen in the form 

Hint= (k~ I j (j + I)) [cos r (3j~- j 2) + V3 sin r (j~- j~)L 
(1) 

where k is some constant of the order of magni­
tude of the kinetic energy of the outer nucleon; j 
is the total angular momentum of the outer nucleon; 
j~, j17 , and jt are its projections on the axes fixed 
in the core; {3 and y are collective coordinates 
which characterize the deviation of the shape of the 
nuclear core from spherical symmetry. Expression 
(1) is valid for the case in which the spin-orbit in­
teraction of the external nucleon is large in com­
parison with Hint. so that the angular momentum 
j is an approximate integral of the motion. 

Averaging the operator Hint over the coordi­
nates of the external nucleon, we can find the in-

Eno (~, r) = (<D (j, .Q) I H;nt I <D (j, .Q)) = (j, .Q I Hint I j, .Q) 

= (k~ jj(j +I)) cos r (3D2 - j u + 1)). 

It is easily seen that the interaction energy 
EQ0({3, y) has a minimum for y = 0, if 3Q2 

-j(j+1)<0, andfor y=7T, if 3Q2-j(j+1) 
> 0. 

This result, therefore, would seem to justify 
the initial assumption about the axial symmetry 

(2) 

of the equilibrium shape. This, however, is not 
actually the case: the energy of the interaction of 
the external nucleon with the deformations of the 
core has been computed only in first order of per­
turbation theory, and we must know the contribu­
tion from higher-order terms. 

In second-order perturbation theory the correc­
tion to the interaction energy due to the nondiagonal 
(with respect to j ) terms of the operator Hint is 
different from zero. This correction [ E Ql ( {3, y)] 
is always negative, since we are interested in the 
equilibrium shape of the ground state of the nucleus: 
moreover, it is proportional to {3 sin2 y, so that 
we can write it in the form 
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E!h (~'- j) = - h~ sin2 j, x = 0 (j = 1/ 2), (6a) 

where b > 0. x2 - 9 = 0 (j = 3/ 2), (6b) 

Similarly we write x3 - 84x- 160 cos 3"( = 0 (j = 6j 2), (6c) 

Eno(~, j) =a~ cos j, x4 - 378x2 - 1728 xcos 3'1 + 8505 = 0 (j = 7j 2), (6d) 

where we set a> 0 for definiteness. Then x•- 1188x3 - 9504 cos 3rx2 + 171072x 

8 (~, 'I);:::::: Eno (~, j) + Enl (~, j) =a~ COS j- b~ sin j • (3) + 11197 44 COS 3'1 = 0 (j = 9 /2), (6e) 

At the point y = 1T the interaction energy will have 
a minimum even if E QtC {3, y) is included, so long 
as !a-b > 0. If the opposite inequality holds, we 
obtain a maximum instead of a minimum. The 
quantity !a-b depends on j and Q. Therefore, 
a special investigation is required for each nucleon 
state in order to find the value of !a -b. 

Bohr's proof of the existence of an axis of sym­
metry for a nucleus with a single external nucleon 
can therefore not be considered completely correct. 
There is still less justification for taking this proof 
over for the case of nuclei with a large number of 
nucleons. 

Birbrair, Peker, and Sliv4 showed under very 
general assumptions that 8E/8y = 0 for y = 0, 1r. 

However, from this it is also impossible to draw 
any conclusions about the axial symmetry of the 
equilibrium shape of the nucleus, since we must 
still find the sign of the second derivative. 

For a more exact solution of the problem of the 
equilibrium shape of a nucleus with a single exter­
nal nucleon, we do not make Bohr's assumption 
about the axial symmetry of the equilibrium shape, 
but keep all other restrictions. We seek the wave 
function of the external nucleon in the form of a 
superposition of states with different values of j 
and require that it be an eigenfunction of the oper­
ator Hint· As a result, we obtain the secular 
equation 

i e:onn'- (j, Q IH;nt ! j, Q') I = 0, (4) 

the roots of which are the average values of the 
interaction energy in the ! ( 2j + 1 ) different states 
of motion of the outer nucleon. 

The diagonal matrix elements of the operator 
Hint were introduced above [ Eq. (2)]. Among the 
nondiagonal elements, the following are different 
from zero: 

(j,Q I H;nt I j, D, + 2) = (j, D, + 21 Hint I j, Q) 

= (k~ j2j (j +I)) sinr [3 (j-D.) (j-n- I) 

X (j + Q +I) (j + Q + 2)1'1'. (5) 

x6 - 3003x4 - 36608 x3cos 3'!' 

+ 1550835x2 +22214400 xcos 3r 

-63149625-1-39424000 cos2 3r = 0 (j = u/2). (6f) 

The E and x belonging to a given j are con­
nected by the relation E = k{3x/ j ( j + 1 ) . 

The solutions of equations (6c) to (6e) are shown 
in Figs. 1 to 3 as functions of y. It is easily seen 
that a single external nucleon in the states under 
consideration leads to an axially-symmetric de­
formation. The exact solution, therefore, gives 
the same result as the approximate treatment of 
A. Bohr. 

FIG. 1 FIG. 2 FIG. 3 

Let us now turn our attention to many-particle 
configurations. If only one of the shells is filled, 
the equilibrium shape of the nucleus will remain 
axially symmetric as before. The only exception 
to this is the configuration with three nucleons in 
the j = % shell, which has an energy minimum at 
y = 1r/6. It is noteworthy, however, that if the shell 
is less than half-filled the interaction energy has 
a minimum at y = 7T/3 (oblate ellipsoid of revolu­
tion) and a maximum at y = 0 (prolate ellipsoid 
of revolution). Once the shell is more than half­
filled, the maximum and minimum change places. 
Special consideration must therefore be given to 
those nuclei in which the external nucleons fill up 
less than half of one shell and more than half of 

The secular equations for different values of 
easily found: 

are another. 
By direct calculation, using the curves of Figs. 
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1 to 3, we convince ourselves that the configura­
tions 

<%)1 C/2r1, (5/2)1 u2r3 • ( 5/2)2 c;2rt. 

(5/2)2 Chr2, (5/2)2C/2ra. <5h)l <9J2rl 

etc. correspond to an equilibrium shape without 
axial symmetry. As an example we show in Fig. 4 
the interaction energy E1 corresponding to four 
nucleons in the j =% shell, the energy E2 corre­
sponding to two nucleons in the j = % shell, and 
the total energy E = E1 + E2, which has a minimum 
at the point y ~ %1r. 

E ~----. t, f7 
7iii i;p7ift 

-1,8 

o oo• fZO• 1so• 
3}' 

FIG. 4 

We have shown, therefore, that the many-par­
ticle configurations lead in many cases to a non­
axially symmetric equilibrium shape. To realize 
these configurations it is necessary that the neu­
trons and protons fill different shells, as is indeed 
the case in heavy and intermediate nuclei. 

In the case of strongly deformed nuclei Hint 
cannot be regarded as a small quantity, so that our 
calculations cannot be directly applied. However, 
the qualitative result illustrated by Figs. 1 to 3 
should be preserved in the case of strong deforma­
tions: the energy of one part of the states of the ex­
ternal nucleon is a minimum for an axially symmet­
ric oblate shape of the core and a maximum for a 

prolate shape, while the energy of another part of 
the states of the external nucleon has the opposite 
behavior -it has a maximum for an axially sym­
metric oblate shape and a minimum for a prolate 
shape. Even for strongly deformed nuclei there 
exist, therefore, configurations in which the com­
petition between the external nucleons leads to a 
non-axially symmetric shape. This is confirmed 
by the calculations of Gursky, 1 Gellikman, 8 and 
Zaikin, 9 who considered the equilibrium deforma­
tion of the core using explicit forms of the single 
particle potential but neglecting the spin-orbit in­
teraction. 

In many-particle configurations the motions of 
the external nucleons may turn out to be strongly 
correlated, which leads to an additional interac­
tion of the nucleons with the deformations of the 
core. The equilibrium shape for one of the pos­
sible types of correlations was investigated 
earlier.10 

In conclusion the author thanks A. S. Davydov 
for valuable comments. 
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