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It is shown that if the moments of inertia of a non -axially symmetric nucleus depart from 
their hydrodynamic values, then there is but little change in the dependence of the ratios of 
the energies of rotational levels on the ratio of the energies of two rotational states with 
spin 2. 

l. Davydov and Filippov1 and Davydov and Rostov
skil2 have developed a theory of the rotational 
states of nuclei which do not have axial symmetry. 
It was shown that the ratios of the energies of the 
rotational states to the energy of the first excited 
state with spin 2 were uniquely determined, pro
vided that the same ratio was known for the second 
level with spin 2. It was also demonstrated that 
the relative probabilities of electric quadrupole 
transitions between the rotational levels are also 
uniquely determined by the same energy ratio. 

These results follow from two simplifying as
sumptions: a) the internal state of the nucleus does 
not change when it rotates (the adiabatic approxi
mation) and b) the principal moments of inertia of 
the nucleus can be expressed in terms of only two 
parameters, A and y, through the equations 

(i = I, 2, 3). (1) 

Such a relation between the moments of inertia and 
y holds in the hydrodynamic model of the nucleus, 
and we shall refer to this approximation as the 
hydrodynamic approximation. 

It is natural to wonder how much the results ob
tained in references 1 and 2 depend on the simpli
fying assumptions. MacDonald3* has used the re
lation 

(2) 

where ~R are the moments of inertia of the solid 

body, Ir are the moments of inertia that coincide 
with (1) when A = 4B,B2, and where p is a new pa
rameter, taken to be 0.1 or 0.2. The relation (2) 
has the property that Ii = ~R as p - 0; for p >" 0 
and y- 0, the moment I3 - 0; for p >" 0 and 
.B- 0, all Ii- 0. 

*The authors would like to thank N. MacDonald for sending 
a preprint of his paper prior to publication. 

Formula (2) can be considered an empirical 
one, taking into account the departure of the mo
ments of inertia from their hydrodynamic values. 
MacDonald considered only levels with spin 2. It 
will be shown below that in this case it is impos
sible to say which is the more important, the non
adiabaticity or the deviations of the moments of 
inertia from their hydrodynamic values. 

In this paper we consider, in the adiabatic ap
proximation, the rotational states of non-axial nu
clei having arbitrary moments of inertia. We shall 
show that in the general case the ratios of the rota
tional energy levels can be expressed through two 
parameters: ~ - the ratio of the energies of two 
spin-2 levels, and TJ - a parameter that depends 
on the nature of the collective motions which de-
fine the rotation of the nucleus. A comparison of 
our results with experiment shows that the hydro
dynamic approximation is good enough for comput
ing the ratios of rotational energy levels. Dis
crepancies between theory and experiment are 
due to an interaction between the rotation and 
the internal state of the nucleus. 

2. In the adiabatic approximation, the rotational 
energy operator for a non-axial even-even nucleus 
is 3 

H = ~ ~a;J7, 
i=l 

where ai = ti:2/Ii; the Ji are the projections of 
the angular momentum on the principal direction 
in the nucleus, while the Ii are its principal mo
ments of inertia. 

As was pointed out in reference 1, the rotation 
states of an even -even nucleus are related to the 
totally-symmetric representation of the D2 group; 
only such states will be considered here. It is 
easy to show that the energy of a rotational state 
of spin 2 is determined by the equation 
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If E1 ( 2) and E2 ( 2) are the roots of this equation, 
then it follows that 

'£at! Er(2) = + (1 + ~), (a1a2 + a1a3 + a2a3) IE~ (2) = + ~. 
(3) 

where 

The energies of all rotational states will be 
written in terms of the dimensionless quantity e: 
= E/E1 ( 2). Then the energies of rotational states 
with spin 3 and 5 can be expressed in terms of the 
experimentally-measureable ratio ~ through the 
formulas 

s1 (5) = 4 + ~. 
The energies of rotational states with other values 
of the spin depend not only on the parameter ~ but 
also on another parameter fJ, 

(4) 

For example, the energies of levels with spin 4 and 
6 are given by 

s3 -5(1 +~)s2 +4[~2 +~~+ 1]s 

-40 [+~(1 + ~) + 7"1J] =0' 

.s4 - 14 ( 1 + ~) s3 + 49 [ 1 + 4~ + ~2 ] s2 

-[36(~3 + 1)+578~(1 +f;;)+3888'Yj)S 

+ [252~ (1 + ~2) + 889~2 + 13608 (1 + ;)'Yj] = 0. 

If the moments of inertia are determined by for
mula (1), then 

"t]='Yjhydr=~2j18(1 +~), 

and the energies of all rotational states depend only 
on ~, which in this case is greater than or equal 
to 2. In general, however, there is a second pa
rameter TJ, whose values lie in a certain interval 
determined by ~. 

To find the limits of the variation of 11 with ~, 

we note that according to (3) and (4) the quantities 
ai /E1 ( 2) ( i = 1, 2, 3) are the roots of the cubic 
equation 

x3 - + (1 + ~) x 2 + + ~x- "IJ = 0. 

The condition that the roots of this equation be 
real and positive implies that 11 must lie in the 
following intervals, whose end points depend on ~: 

~2(3-~)<54"1]<3~-1 

0<54"1]<3~-1 

(1<~<3), 

(~ > 3). (5) 

Figure 1 shows the ratios e: 1 ( 4 ) and e: 2 ( 4 ) as 
functions of ~ for various values of 11 satisfying 
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FIG. 1. Possible f 
values of the ratios 9, 
e:, (4) and €2 (4) for 
various values of the I 
parameters e and Tf· 
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the inequalities (5). The cross hatched area is 
bounded by two curves, T'Jhydr. (corresponding 
to the hydrodynamic approximation) and fJMD 
(corresponding to moments of inertia determined 
by (2) with f3 = p = 0.2). Figure 2 shows e: 1(6) 
as a function of ~ and fJ, for the range defined 
by (5) . 
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FIG. 2. Possible 
values for the ratio 
e:, (6) for various 
values of the pa
rameters e and Tf· 
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It should be noted, naturally, that the values of 
11 in (5) correspond to all possible ratios of the 
principal moments of inertia, including some that 
are utterly unrealistic. For example, in Figs. 1 
and 2, the point marked with a cross corresponds 
to the rotation of the nucleus as a rigid sphere (I1 

= I2 = 13; ~ = 1 ); in such cases 11 is zero or 
close to it. 

At present it is considered that the moments 
of inertia in the nucleus are intermediate between 
their hydrodynamic values and those obtaining for 
a rigid body. Hence the actual ratios of the mo
ments of inertia correspond apparently to values 
of 1J for which the energy ratios q ( J) are dis
placed from their hydrodynamic values toward 
the cross hatched area. Taking this into account, 
we conclude that the energy ratios e:i ( J) depend 
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Experimental re.sults for the ratios e: 

Nucleus I E,(2) (kev) I 

Os1D0[4.GJ 186,7 2.99 
Mg24[•] 1368 3.09 
Fe56 (7) 845 3.49 
Oslss[•] 155 4.09 
Osls•r•J 137.2 5.60 
Sm152[") 122;3 8.92 
ErlSS[B] 80.7 9,76 
ErlSB[B] 79~9 10.29 
Dyl•O[D] 87.0 11.16 
Gctl••r•·•J 89,0 13.01 
W1B2[•] 100.9 12.11 

only weakly on 71, at least for values of 11 which 
actually occur in nuclei. This is especially true 
for ~ ~ 4. Almost all of the experimental values 
for e:1 ( 4) and e:1 ( 6) now known to us (see the 

e (3) •• (4) e, (4) •• (6) 

4.04 2.94 5,12 5.61 
3.82 3.01 4.61 -
4~54 2.47 4,85 -
5.10 3.08 6.17 -
6,63 3.16 7.73 6.33 

10,14 3.01 11.68 -
10;67 3.29 11.87 6.76 
11,22 3.31 12.47 6:86 
12.11 3,27 13,35 6.70 
14.0 3.24 15.34 6.56 
13.20 3.26 14.68 -

much less sensitive to departures of the parameter 
71 from its hydrodynamic value than they are to 
deviations from the adiabatic condition. 
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