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The conductivity of an electron gas in perpendicular electric and magnetic fields is investi
gated for WT » 1 ( T is the electron relaxation time, w is the cyclotron frequency). Elas
tic scattering of electrons on fixed short-range force centers is considered. Interaction 
between the electrons and the scatterers is treated without the aid of perturbation theory. 
In the final result the conductivity is expressed as a function of the magnetic field and the 
exact amplitude for scattering of a zero energy electron on a single center in the absence 
of a magnetic field. 

IN the recent work of Adams and Holstein, 1 gal
vanomagnetic phenomena were studied in a strong 
magnetic field. Here, the interaction of the elec
trons with different scatterers was considered by 
the authors as a perturbation, which required the 
assumption of a finite width of the electron levels 
for the elimination of divergences that appear in 
the Born approximation. 

fu the present work, the conductivity of an elec
tron gas is computed for a strong magnetic field 
in the case WT » 1, where T is the relaxation 
time of the electrons, w = eH/m (the system of 
units is used for which ti = c = 1 ) . Only elastic 
scattering of the electrons on randomly-arranged 
immovable centers is considered; the radius of 
action of these centers is assumed to be small in 
comparison with the wavelength of the electrons 
and with the mean distance between scatterers. 
The interaction of the electrons with the scatter
era is considered without the aid of perturbation 
theory, inasmuch as the Born approximation, 
strictly speaking, is not suitable at low energies. 
Limiting ourselves to the case in which the direc
tions of the electric and magnetic fields are per
pendicular, we begin our calculations with the gen
eral expression for the conductivity tensor obtained 
by Kubo: 2 

00 0 

crpv = ~ ~ c-•1dt ~ df- Sp {pvv (-if-) VI'- (t)}, 
0 

p = cxp (- ~Jt) / Sp exp (- ~Jt), (1) 

:JC is the total Hamiltonian of the system in the ab
sence of an electric field; v J1. ( t) is the Heisenberg 
operator of the J1. component of the velocity of the 

electron; E > 0; {3 = 1/kT; n is the normalized 
volume; JJ., v = x, y, z. The diagonal elements of 
the tensor aJ.Lv can be written in the much simpler 
form 

00 

X~'-=~ e-•1dtei!fttvp. (0) e-i.Ytt. 
0 

(2) 

(3) 

For calculation of aJ.L'V• it is convenient to put the 
operator XJJ. in the form 

+oo 
1 ~ 1 1 X 1, = .-, dE E !It . V~'- (0) E !It + . . 

"'"' - -te: - te 
(4) 

-oo 

The identity of Eqs. (3) and (4) can easily be seen 
by taking their matrix elements in the representa
tion of the Hamiltonian :JC and carrying out inte
gration over t in (3) and integration over E in 
(4). 

We shall now consider separately the cases of 
Boltzmann statistics and Fermi statistics. 

1. NONDEGENERATE ELECTRON GAS 

In this case, it can be assumed that :JC is the 
Hamiltonian of a single electron in the field of the 
scattering centers, i.e., 3C = :JC0 + V, where 

Jto= (p- eA)2 /2m, V =~V;. 

Here A is the vector potential of the magnetic 
field H, Vi is the Hamiltonian of interaction of 
the electron with the i-th scattering center, lo
cated at the point ri. 

We write the vector A in the form Ax = Az 
= 0; Ay = Hx. The eigenfunctions and the eigen-
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values of the operator JC0 have the form 

'Ynk k (r) = exp [i (k y + kzz)] 'Pn (xI l -lk11 ), 
I! z 

Enkz = w (n + ~) + k~ I 2m, 

where cpn is the Hermite function of n-th order 
and l = (eH)-112• The matrix elements of the op
erators vx( 0) and vy( 0) are determined by the 
formula 

(n'k~k: I Vx (0) + iv11 (0) I nk11kz) 

= -i(2wfm)'l•n'/.on',n-1o, o, , 
kyky kzkz 

= i (2wlm)'l• (n + l)'l•on'•n+1o , o , • 
kyky kzkz 

(5) 

In what follows, we shall denote the sets of 
quantum numbers nkykz by the Greek letters a, 
{3, etc. 

Following Luttinger and Kohn, 3 we introduce 
the "scattering operator" T(::l:) (E), which is de
termined by the relation 

(E -:Je±isfl = G~±>+ G<f>T<±>(E)G~±>, 

G~±) = (E- :J£0 ±is fl. (6) 

The operator T(::l:) (E) can be written in the form 
of a series 

T(±) (E)=~ Tj=> (E)+ ~ Tj±> (E) G~±>IT~±> (E)+ ... , (7) 
j j+k 

where the "operator of scattering on the j-th cen
ter" T~±) (E) satisfies the integral equation 

Tj±> (E)= Vi+ ViG~±>Tj±> (E). 

The matrix element (f31 Tt><E) I a) for E = Ea 
is the amplitude of the transition from the state a 
to the state {3 in the scattering of the electron on 
the j-th center. In reference 4, the author calcu
lated the amplitude of scattering of an electron of 
low energy on the short-range potential V in a 
strong magnetic field [ it was assumed that the 
radius of action of the scattering potential r 0 

« (2mE)-112 J. According to the results of ref
erence 4, 

(~ JTj+> (E") i oc)='Y~ (ri) 'Y" (ri) 1:7M ~"), (8) 

where 

K (E)= z-2 ~ [2m (E- nw- w I 2)]-'1,, 
n=o 

f is the exact scattering amplitude of a zero en
ergy free electron on the potential V; N in the 
expression for K is so defined that the last term 
in the sum over n would be purely imaginary. 

By a method completely analogous to that used 
in reference 4 for the derivation of (8), it can be 
shown that the matrix elements Tt>< E) are de
termined by an expression similar to (8), i.e., 
that (8) maintains its force if we replace E by 
Ea in the argument of Tt> and in K. The ma
trix elements of the operator Tt> (E) are con
nected in simple fashion with the matrix elements 
of T~+>(E): 

J 
(oc I Tj-> (E) I~)=(~ IT)+> (E) I oc)*. 

Expressing Xp, and p in terms of the operator 
T (E), determined by Eq. (7), one can compute the 
elements of the tensor ap,v for p,, v = x, y. It is 
shown that in the approximation WT » 1 and {3-1T 

» 1, it is sufficient to consider a single scattering 
center and multiply the expression obtained in this 
case for the number of collisions of the electron 
per unit time by the number of such centers. There
fore, in what follows, in order to make the calcula
tions clearer, we shall understand by T (E) the 
scattering operator on a single center. 

Substituting (4) in (3), we have 

xJ.I. = x~> + x~l) + X~2>. 

Here x<O> does not depend on the operator 
JJ, 

T (E); x~1> is proportional to the first power of 

T (E), and xu> is proportional to the second. 

(9) 

- - 1-. (~ i TH (Ea.) lr) J_ (r I Vp. (0) I a)}, (10) 
Wo:fi -IE (JJay 

where wa{3 = Ea- E13. In obtaining (10), we took 
it into account that T<+>( E) has a pole only in the 
lower half of the complex plane E, while T<-> (E) 
has a pole only in the upper half-plane. The oper
ator Xp, has a simple physical meaning. X~0 > is 
the operator of the p, -th coordinate of the elec
tron relative to its center of rotation in the ab
sence of collisions, while Xp, - x~0 > describes the 
mean change of Xp, under the action of the scatter
ing of the electron on the potential V. We note that 
X~0 > makes no contribution to ap,p,• inasmuch as 
the term corresponding to it is purely imaginary. 
One can generally omit X~2 > in the calculation of 
ap,v in the approximation under consideration, 
since 

2J r<-> (E) I oc) E-; - ie (oc I Vp. (0) I oc') 
aa' a 

1 
X , . (oc' I T<+> (E) 

E- £", -;-te 
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disappears on summation over the x coordinate 
of the center of rotation of the electron ( l2ky ), be
cause of the orthogonality of Hermite functions of 
different order. We recall that only 'l!a(R) and 
'11~, ( R), which enter into the matrix elements of 
the operators T<+>( E) and T<->( E), depend on 
ky; here R is the radius vector of the scattering 
center. 

Let us consider the operator p (X). We can 
represent the quantity exp ( - {3'JC) in it in the 
form 

exp (- ~:Je) = S (i~) exp (- ~:Je0 ), 

where S ( i/3) is determined by the equation 

- ~ s (i~) = s (i~) v (i~) (11) 

and the boundary condition S ( 0 ) = 1. By direct 
substitution it can easily be shown that the solution 
of (11) (with accuracy up to terms of higher order 
in the operator T' ) is given by the formula 

1- exp (f3wya:) 
(oc Is (i~) I r) = Oa:y- (IX IT' (Eo:): y), (12) 

wya: 

where T' is determined by the integral equation 

(oc IT' (Ea) I r) = (oc I vIr)+~ (oc IT' (Ea) I o) ( ____!_) (o /VI rh 
a \ wa:a P 

(here the index P means that the integral over E 
is taken in the sense of the principal value). The 
solution of this equation differs from the matrix 
elements (a I T< ± > ( E a ) I y) only in the fact that it 
does not contain Re K (Ea ). 

Substituting the expressions (9), (10), and (12) 
obtained for XIJ. and exp (- {3'JC) in (1) and (2), 
we obtain, after tedious but elementary transfor
mations, 

«y 

X~ I (r I r<+>(E~..) I),) 120 (E~.- Ea). 
A 

where 

Po (E) = z-1 exp (-~E), Z = Sp exp (- ~:Je0 ), 

(13) 

(14) 

ne is the electron concentration. In the deriva
tion of (13), we made use of the "optical theorem" 
for the operator T ( E ) : 

-2 Im (oc I r<+> (E) I oc) = 2~;.~1 (IX I r<+J (E0) I~) (2 0 (Ell- E) 

and also of the fact that 

R.e (~I r<+>(Ea) /<X) (IX IT' (Ea) I~)= I(~ I T<+J (Eo:) \IX) 12• 

The validity of these expressions follows from the 

explicit form of the matrix elements of T<+> and 
T'. 

Thus axx and ayy are proportional to the 
mean square of the Larmor radius of the electron 
and to the frequency of collisions with the scatter
ers. Equation (14) shows that y<1> makes no con
tribution to ayx in the given approximation, i.e., 
the average change of the y coordinate of the 
electron under action of the collisions is equal to 
zero if the electric field is directed along the x 
axis. 

We shall compute axx in two different limiting 
cases. Substituting (8) and (9) in (13), we have 

(15) 
a 

41t[2 K' (E) 
v (E)= np (1 + fK''P + (fK')2 ---;;-. (16) 

We use here K = K' - iK"; np is the number of 
scatterers per unit volume. The quantity v (E) 
is the total number of collisions of the electron 
with energy E per unit time. In the limiting case 
{3w « 1, we have substantially na R:: ( {3w ) -t in 
(14), and the well-known classical formula 

(17) 

is obtained for axx, where 

In the other limiting case {3w » 1, if all the elec
trons are in states with na = 0, axx has the form 

(18) 

Here, 
co 

Ei (u) = \' +dz exp (- z), 
.\ z u 
0 

that is, in the limiting quantum case, axx is almost 
independent of the value of the magnetic field. 

2. DEGENERATE ELECTRON GAS 

In the case of Fermi statistics, it is appropriate 
to calculate in the second-quantization representa
tion. We introduce the operators aa of creation 
of an electron in the state a and the operators a13 
of annihilation of an electron in the state {3. The 
properties of these operators are defined by well
known commutation relations 

The operators X and XIJ. are single particle op
erators and have the form 
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:Je = ::feo + V, ::fe0 = ~(E«- C) ncx. 
a. 

V= ~ a:afl(~X/V/~), X11-= ~a:afl(~X/X~'-1~). (19) 
•+fl «fl 

Here ?; is the chemical potential and na = a~aa 
is the operator of the number of electrons in the 
state a. 

The operator exp ( - {3'JC ) can, as in the non
degenerate case, be written in the form 

exp (- ~:Je) = S (i~) exp (- ~:Je0 ). 

where, under the given approximation ( WT » 1 ) , 

s (i~) = I +~a: ay 1 - exp (~wy.) (oc IT' (Ecx) I r). (20) 
a.y wya 

We now substitute (19) and (20) in (1) and (2), and 
make use of the relations 

z-1 Sp [e-ll:Je0n .. ] = f (Er~.), 

(1X=/=r) 

etc. where f (E) is the Fermi function. 
Carrying out transformations similar to those 

used in the derivation of (13), and making use of 
the identity 

f (E«)- f (Ey) = [I - exp (~wr~.y)] f (Er~.) [I - f (Ey)], 

~f (E) [I - f (E)] = df (E) I dC, 

we get 

e2 ""df (Ea.) z2 ( + 1l ) (E ) 
Oxx: = Oyy = Q .LJ ~ n« 2 v "- ' Oyx = - n,e2 I mw, 

• (21) 

where v (E) is given by Eq. (16). 
In the limiting quantum case 1 « {3 (?;- w/2) 

< {3w, all the electrons are found in states with 
n = 0, and we get 

(22) 

from Eq. (21) with the aid of (16). 
In order to obtain the final expression for the 

conductivity, it is still necessary to take into ac
count the dependence of the chemical potential ?; 
on the magnitude of the magnetic field. This de
pendence can easily be found from the condition 

n, (C) = n~o> (Co). 

Here n <g> and ?;0 . are the electron concentration 
and the chemical potential in the absence of the 
magnetic field, respectively. In the case under 
study, 

c - w I 2 = 4C~ I 9w2 

and the final expression for axx has the form 

(23) 

In the case w « ?;, (21) can be reduced to the 
form 

00 e2 (2m)'/• (" df (E) 
Oxx = (Zrc)2 .;; ~ dE~ I (E) 'I (E), (24) 

c.>/2 

where 
I (E) - '\.l n + 1/2 

- "7,J (E I w- n- 1/z)'1• · 

The summation is carried out over all n for which 
the radicand is non-negative. 

For computation of K' and I, we introduce the 
notation E = w ( N + E + ! ) , where N is an integer, 
0 :s E < 1, and make use of the summation formula 
of Poisson, which is written in the form 

+oo +oo 
~ exp (i2~tkx) = ~ o (x-n). (25) 

k=-00 n=-oo 

Multiplying (25) by the function qJ (x), and inte
grating over x from 0 to N + E , we get 

N +oo N+• 

~ If (n) = } rp (0) + ~ ~ dxrp (x) exp (i2~tkx). 
n=O k=-oo o 

By means of this formula, it is not difficult to ob
tain an expression for I and K' in the case 
N » 1: 

I (E)~} ( N + 8 + } ?' [I + ~ ( N + s + }f'r, 
00 

X ~ cos (2rcke- rc/4) J 
k=l (2k)'f.. ' 

( 1 )'!, [ ( 1 )-'/. K' (E)~ (2mw)'f, N + s + 2 I + N + 8 + 2 
00 

....., cos (2rrke- rc /4) J (26) 
X k~ (2k)'f• • 

As E tends to zero, the behavior of the series 
appearing in Eq. (26) is accurately described by 
the function !E-t/2. This function serves as an 
integrating factor; therefore in integration over E 
in (24), we can neglect the departure of the denomi
nator of (16) from unity, for all terms except the 
term corresponding to the product of the series en
tering into (26). As a result, the product I (E) v (E) 
can be written in the form 

00 

(Ji)2 (I + ~ (~)'(, ....., cos (2rrke- rc/4) + ~ 1 J 
w 2 E k~ (2k)'f, 4E 2e + f2 j[2 

with accuracy to within a common factor. 
Expanding the last component in the brackets 

in a Fourier series and integrating over E in 
(24) for the case 1 < {3w « {3?;, we obtain 
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00 

+ ~ (- J)k [Ak cos (2~:~- ~) + Bk cos en~~)]}, (27) 
k=l 

where 

The asymptotic expression of the cosine inte
gral has the form 

Ci z=lnrz (z~ 1), r = 1.7 ... , 

for small values of the argument; therefore the 
term in the conductivity proportional to Bk can 
play an important role, especially if w/ t is not 
too small. 

In conclusion, I express my thanks to L. E. 
Gurevich for suggesting the topic and for constant 
interest in the work, and to S. V. Maleev for use
ful discussions. 
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