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By considering jointly the spectral representation of the photon Green's function and the re­
normalizability property, the behavior of the D function is investigated for very large ener­
gies and e2 = 1/ 137 , and for very large charges but not too high energies. With an accuracy 
to within a numerical parameter it was possible to establish the dependence of the D function 
on charge in the first case, and on energy in the second case. 

AT present it is still an open question whether either does not depend on the charge at all or is 
the difficulties that occur when quantum field the- exponentially small. The last caE;e corresponds 
ory is applied to phenomena taking place at small to the non-logarithmic character of the divergence 
distances indicate an internal inconsistency of the of the renormalized constant in the exact solution 
theory or whether they are due to the inadequacy of the equations of quantum electrodynamics and 
of the existing calculation methods. Although seems to be entirely possible. 
objections have been raised repeatedly against the In the second section we shall consider a model 
double-limit proof of the zero-charge, the argu- of quantum electrodynamics for very large values 
ments of Landau and Pomeranchuk (which, how- of the renormalized coupling constant. It is pas-
ever, refer only to electrodynamics ) are still sible to find the explicit dependence of the Green's 
quite convincing, even if they have only qualitative function on the energy in a wide region. It should 
character (see, for example, the article by Lan- be noted that these results can be obtained only by 
dau1 ). making the very critical assumption that the role 

In this connection it appears to be of interest of the mass term in the Lagrangian does not be-
to try to investigate the photon Green's function come too important as the coupling constant in-
for very large energies, using only the most gen- creases. 
eral features of the theory: positive definiteness In conclusion we shall discuss the problem of 
of probabilities, renormalizability, gauge invari- the zero charge in connection with the preceding 
ance, etc. This can be accomplished partially. considerations. It will be noted that our results 
As will be seen below, the qualitative concepts do not in any way refute the arguments of Landau 
used in the investigation can be made self-consist- and Pomeranchuk, who considered the Hamiltonian 
ent, which leads us to conclude, for example, that directly, although our discussion starts from the 
it is not possible to prove rigorously the existence very beginning with the assumption that there is 
of a zero-charge using only renormalizability and no zero charge (i.e., that it is possible to use the 
the Lehmann expansion. At the same time, although basic general principles of the theory consistently 
these two conditions do not, of course, determine with a nonvanishing value of the renormalized 
the propagation function completely, they do allow charge ) . 
us to say more than one should have expected about 
its qualitative properties. 

In the first section of this paper we investigate 
the behavior of the photon Green's function in the 
region of energies much larger than the critical 
energy (corresponding to the unphysical pole ap­
pearing in the Green's function in the usual calcu­
lations). Up to a numerical constant it is possible 
to establish the dependence of the D function on 
the charge, and it turns out that the D function 

1. THE PHOTON GREEN'S FUNCTION FOR 
VERY LARGE ENERGIES 

The renormalized photon propagation function 
De= de /k2 is a function of two variables: the di­
mensionless ratio k2/m2 (k is the energy-momen­
tum vector of the particle, and m is the mass of 
the electron) and the square of the renormalized 
charge e2• Gell-Mann and Low showed from the 
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renormalizability requirement of the theory that 
the function de (k2/m2, e2 ) can be expressed in 
terms of a function of a single variable in the asym­
ptotic region k2/m2 » 1:2 

(1) 

where F and cp are inverse functions, and q ( e2 ) 

nearly coincides with e2 for small values of the 
charge: 

q (e2) = e2 [I - (5;9rt) e2 + ... ]. (2) 

Introducing the functions 

g (x) =In cp (x), 

~(x)=h(-x-1), x(x)=-1/g(x), (3) 

we rewrite (1) in the form 

e2de = h{~ + g(q (e2))] =~[X (q(e2))(1- X (q(e2)) W1 l. 

~ = In (k2/m1), (4) 

where h and g, and l/J and x are inverse func­
tions. 

As is known, perturbation theory gives the fol­
lowing expressions for the functions x ( x) and 
l/J (x) for small positive x: 

x (x) = x;'3rt, ~ (x) = 3rtX, (5) 

which leads to the known expression for e2d0 : 3 

e%< I. (6) 

This means that the functions g and h are deter­
mined by perturbation theory for the following val­
ues of the argument: 

g(>:) = -3rt/x for 0 < x< I, 
h (x) =- 3:t/X for x < 0, I xI> I. (7) 

The Green's function d0 can be written in the 
form of an expansion in terms of the masses:2•4 

00 

de (k 2jm2 , e2) = I + k2 ~ dx2cr (x2 , e2)/(k2 + x2) (8) 
0 

and is therefore an increasing function of k2 (or 
~ = ln (k2/m2 ), if we consider space-like k2 > 0 ): 

a~· de (k 2jm2 , e2) = r dx2x2cr (x2, ea);(k2 + x2)2 > 0. (9) 
0 

Since, for values of ~ which go up to + oo and 
for small values of e2 which start from zero, the 
argument of the function h (x), which is equal to 
~ + g (e2 ) f'::j ~- 37r/e2, varies from - oo to + oo, 

the function h ( x) is an increasing function of its 
argument everywhere (see Fig. 1). Two cases are 
possible: 

I) h (~ + g (q (e2))]-'> oo for ; --'> oc (curve 1), 
2) h[E+g(q(e2))]-'>~ for E->oo (curve 2), 

where {3 is a numerical constant which is inde­
pendent of the value of the renormalized charge. 
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FIG. 1 

The behavior of g ( x) [ the inverse function of 
h (x)] is shown in Fig. 2. In case 2 the argument 
of g ( x) 0hanges only from zero to {3, so that 
q ( e2 ) is limited from above by the value q ( e2 ) 

= {3. There exists, therefore, a maximal value of 
the renormalized charge for which quantum elec­
trodynamics is valid: e2 :::: ei, q ( ei) = {3. We note 
that then ei :::: {3, since ei is the value of the func­
tion eidc ( k2 /m2, ei) for k2 = 0 and {3 is the 
value of the function eidc (k2/m2, ei) for k2 - oo, 

and de must increase as k2 increases. This re­
sult was obtained by Gell-Mann and Low. 2 

of:cJ 

FIG. 2 

1/ 
I 

The behavior of the functions l/J ( x) and x ( x) 
is shown in Figs. 3 and 4. For ~ = 1/x ( e2 ) (which 
corresponds to ( e2 /37r) ~ = 1 for small values of 
the charge ) the argument of the function l/J ( x) 
jumps from + oo to - oo • If the first approximation 
l/J ( x) = 37rx is used, this discontinuity represents 
an unphysical pole in the Green's function ("zero 
charge" ) . If we consider the function l/J ( x) as 
shown in Fig. 3, we see that l/J (x) remains con­
tinuous for x = ± oo [it is equal to a, the root of 
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X~) 

FIG. 3 FIG. 4 

the function g (x )] . These curves, of course, do 
not prove in any sense the absence of the zero 
charge. To decide this question, we must first 
find out how adequately the figures represent these 
functions, if the latter are derived directly from a 
study of the Hamiltonian itself. This problem will 
be discussed below. 

Let us now attempt to obtain some information 
on the behavior of the Green's function for very 
large energies ~ » ~ 0, ~ 0 = - g ( e2 ) Rj 371/ e2• If 
h ( x) were a function in the argument of which 
small terms could be neglected in comparison with 
large terms, even if the small terms are not small 
as compared with unity, we could conclude imme­
diately that for ~ » 37r/e2, e2dc does not depend 
on the charge: e2dc = h ( ~ ) . However, h ( x) may 
have exponential character, and then, of course, 
the dependence on the charge remains in force 
for arbitrarily large values of ~. 

Let us now try to calculate the value of the ratio 
h ( x + y) /h ( x), when x » y ( x - oo) and y ~ 1. 
For this purpose we consider R ( y): 

R (y) = h ["'] + g (e' 2)]/h [~ + g (e' 2)] 

00 

= [ 1 + p2 ~ dx2a (x2, e'2Jf(p2 + x2) J 
0 

00 

X [ 1 + k2 ~ dx2a (x2, e' 2)j(k2 + x2)r 1 , (10) 
0 

when TJ - ~ = y remains a finite quantity and TJ 
and ~- oo; e'2 is arbitrary. (R(y) is independ­
ent of e' 2.) Under these conditions p2/k2 = eY =A. 
is a finite quantity, while p2 - oo and k2 - oo 

Each of the integrals in the numerator and the de­
nominator of (10) goes to oo if de- oo, i.e., we 
have case 1 (cf. the figures). In case 2 we have 
R - {3/ {3 = 1. This value of R ( y) is included as 
a special case in the subsequent discussion, and 
we shall, therefore, assume that the integrals in 
(10) do not diverge. The R is written in the form 

00 

R = )..F (1-.)jF (1), F ()..) = ~ dx2a (x2, e'2)j()..k2 + x2). (11) 
0 

F (A.) and F ( 1) go to zero for k2 - oo. There­
fore 

F (A) a I a . aF 1 (aF) (12) 
f(1) =""""(jjiiF()..) 7fk2F(1)="-(»; 7»: A=l' 

or 

(aF;a)..h=liF (1)- )..(aF;a)..)JF ()..) = o. (13) 

Integrating the last equation, we find* 

Rj).. = F ()..)jF {1) = )..k, 

or 
00 00 

. [ 2 (' o (x2, e'~) dx2 I (' o (x2, e'2) dx2] 
R (y) = evv, V = 1 -;!_.~ k .) (k2 + x2)2 ~ k2 + x2 • 

0 0 (14) 

We have therefore proved the following property 
of the function h: 

h(x + y)/h(x)-+evv, X_,. oo, (15) 

where the numerical parameter v is given by (14). 
R ( y), and hence v, do not depend on e' 2, which 
was included in (10) in an arbitrary way. Neverthe­
less, v cannot be calculated by perturbation the­
ory because its applicability requires not only e' 2 
« 1 but also e'2 ln ( k2 /m 2 ) « 1. The function 
v ( k2), which becomes v in the limit k2 - oo, 
is zero for e'2 « 1, e' 2 ln ( k2 /m2) « 1 (pertur­
bation theory), depends on k2 in a complicated 
manner for e' 2 ln (k2/m2) "' 1, and becomes equal 
to the above-mentioned number v for k2- oo. 

From (14) we find the following limitations on 
v: 

(16) 

If we set 

h (x) = evxp (x), (17) 

we see that the function P ( x) has the following 
property: 

P(x+y)jP(x)-'>-1, x-oo. (18) 

Going back to formula (4), we have now 

e2dc (k 2fm2 , · e2) = exp {vg (q (e~))} (k~/m")" P (In (k2/m2)), 

(19) 

The function g [ q ( e2 ) ] has for small e2 the form 5 

g (q (e2)) = - 3rrjq (e2)- fIn q (e2) + C1q (e2) 

(20) 

*It can be easily shown that the value of F(,\)/F '(1), at 
which, in fact, the cancellation in the derivation of (13) was 
carried out, is finite. 
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We see from (19) that we must take the first two 
terms of this expansion. Then we have, finally, 

e% (k2jm2, e2) = exp { _ 3Jtvje2} (e2)-9v/4 (k2jm2)v p (in (k2jm2)), 

e2 < I, (e2/31t)ln(k2/m2)~ I. 

If we considered the next approximation for the 
function q ( e2), we would find, according to (2), 
that this only introduces an unessential constant 
factor on the right hand side of (20). The energy 
dependence given by formula (20) is almost triv­
ial and could have been predicted without calcula­
tions. The result given above is useful only in 
that it leads to a connection between the value of 
the parameter v with the characteristic integrals 
(14). Indeed, if J K-2 a ( K2) dK2 converges and 

f a ( K2) dK 2 diverges (case 1), the dependence of 
2 ( 2)V-1 a on powers of K can only have the form K 

for 0 ::: v ::: 1, which gives at once an energy de­
pendence of the type (20). The case v = 0 corre­
sponds to a logarithmic divergence of the renor­
malized coupling constant, 

z;·~ = 1 + ~ cr (x2) dx 2 

and does indeed occur in the perturbation theory, 
as was mentioned above. For a finite renormali­
zation (case 2), as in the case of a logarithmic 
divergence, e2dc does not depend on the charge 
in the region of large energies. As is seen from 
(20), the quantity e2dc, as a function of the charge, 
is exponentially small for v > 0, and can therefore 
not be expanded in a perturbation series. Here the 
circumstance that the derivation of (20) was based 
on the property (1), which was obtained in refer­
ence 2 precisely with the help of perturbation the­
ory, is probably not essential for the validity of 
(20), since the renormalizability property reflects 
only the most general aspects of the theory. If v 
#- o, za-1 diverges like A2v (A is the cut-off mo­
mentum). 

It should be emphasized that, although the case 
v = 0 is intuitively regarded as the most probable, 
there do not seem to exist any special reasons for 
excluding values of v #- 0. 

In the following section we shall discuss quantum 
electrodynamics for large values of the renormal­
ized coupling constant, where the cases v = 0 and 
v #- 0 both seem to be perfectly acceptable, even 
if they lead to D functions of completely different 
qualitative behavior. 

2. THE PHOTON GREEN'S FUNCTION FOR 
LARGE VALUES OF THE RENORMALIZED 
COUPLING CONSTANT 

Since we are not able to construct a quantitative 
theory of strong coupling, it is of interest to inves-

tigate the general properties of such a theory, even 
if only on the example of electrodynamics. We 
shall again start from the renormalizability prop­
erty (4), which we rewrite in the form 

(21) 

If the magnitude of the charge e2 becomes much 
larger than a, the root of the function g (x) (see 
Fig. 2), and goes to infinity in case 1 or to ei 
[ q ( ef) = [3, g ( {3) = oo ] in case 2, the quantities 
g ( e2dc ) and g [ q ( e2)] in formulas (21) and (4) 
increase beyond limit. If at the same time the 
energydoes not become too large, so that the in­
equalities g ( e2dc) » ~ or g [ q ( e2)] » ~ are 
fulfilled, we can use the property (15) of the func­
tion h ( x) and write 

dc(k2jm2, e2) = e-2q (e2)(k2jm2)v =de ( 1' e2) (k2jm2)v. (22) 

The quantity q (e2 )/e2 equals dc(l, e2 ), i.e., 
the value of the asymptotic Green's function for 
k2 = m2. It follows from the derivation that we 
have neglected those terms in (22) which are small 
in comparison with de ( 1, e2 ) , although they may 
be greater than, or of the order of, unity, if only 
de ( 1, e2) is large. 

In the discussion above we have made one very 
critical assumption. The criterion for the applic­
ability of (22) is given by the inequalities ~ 

« g ( e2dc) or ~ « g [ q ( e2 )] , which limit the 
quantity k2/m2 from above. On the other hand, 
formulas (4) and (20) have asymptotic character, 
i.e., terms which vanish as k2/m2 increases are 
omitted in these expressions. It is clear that, if 
these terms grow very fast with increasing e2 
(roughly speaking, faster than ""exp[g(e2)]), it 
is impossible to find a region of values of k2/m2 
which are large enough that these terms can be 
neglected, but still sufficiently small to satisfy 
the above-mentioned inequalities. We shall as­
sume that this difficulty does not occur, basing 
our supposition on the rather natural hypothesis 
that the mass term in the Lagrangian cannot have 
too much importance for very large values of the 
renormalized charge. 

Formula (22) determines the dependence of de 
on energy in a rather wide region. The exact ex­
pression (not the asymptotic one) for de should 
have branch points at the threshold values of k2 
which are multiples of the square of the mass. In 
the asymptotic theory m 2- 0, and all branch 
points converge to the point k2 = 0. In this case 
the character of the branching is ( k2 ) v. This 
throws, perhaps, some light on the meaning of 
the parameter v. 

It is easy to find the spectral function a ( K2, e2) 
corresponding to expression (22). Since 
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we find, after substitution of (22), 

(23) Now the a ( K2, e 2 ) corresponding to (29) is 

x2a (x2, e2) =de ( 1, e2 ) ~ (e2). (31) 

x 2a (x2, e2) = lt-1 de ( 1, e2) (x2 I m2)v sin ltV. (24) 

Equation (24) is valid with an accuracy up to 
terms which are small in comparison with d0 ( 1, e 2 ) 

if K2/m2 » 1, but 

In (x2 1m2) < g (e2 de), g (q (e2)), 

In the case v = 0, 1, d0 (k2/m2, e2 ) =de( 1, e 2 ) 

with the same accuracy, and a/ de ( 1, e2 ) - 0 
with increasing e 2• If, in this case, the renormal­
ization is finite, d0 (1, e2)- {3/ef and a (K 2, e2 } 

itself goes to zero. 
Let us consider the case v = 0 in more detail. 

Since the basic term in a which is proportional 
to de ( 1, e2 ) vanishes, it is desirable to determine 
the next term of the expansion. It follows from for­
mula (23) and the renormalizability condition (4) 
that the dependence of a on K2 and e2 in the 
asymptotic region has the form 

x2a (x2, e2) = e-2f [In (x2 I m2) + g (q (e2))], (25) 

where f [ x] is some function which, in the case 
v = 0, satisfies condition (18). The asymptotic 
expression for de ( k2 /m 2, e 2 ) for v = 0 consists 
of a term independent of k2/m2, dc(1, e2 ), and 
a term which is an increasing function of it. The 
latter is small in the region under consideration, 
since for v = 0 

We can easily obtain the increasing part of d0 , 

starting from (25). We have 

(26) 

Since the integral converges, the important values 
of K2 are K2 ::; k2, i.e., 

Inasmuch as f satisfies property (18), we obtain 
at once 

or, adding the constant term to d0 , 

de (k2 I m2 , e2) =de (I, e2 ) + e-2f [g (q (e2))] In WI m2 ). (28) 

Using condition (26), we rewrite (28) in the form 

dcWim 2 , e2) = dc(1, e2)[1 + ~(e2)ln(k2 fm2)), (29) 

~ (e2 ) = f [g (q (e2))1 I e% (I, e2 ) -+0. (30) 

Equation (30) is, of course, equivalent to the 
above-mentioned condition a/d0 (1, e 2)- 0 for 
increasing e2• If the renormalization is finite, 
q(e2 )-f3 and d0 (1,e2)-{3/ef for e2 -e~. 
Here a ( K2, e 2 ) goes to zero like .0. ( e2 ), which 
in its own right must vanish faster than [ g ( q)] - 1, 

as can be seen from the definition (30) and the 
convergence of the integral 

00 00 

~a (x2) dx2 = e-2 ~ f (x) dx. 

If the renormalization is infinite, it is easily 
shownfrom (30)that .0.(e2 )- [g(q)]-1• In order 
to see this, we write (30) in the form 

~ (e2 ) = f [g (q (e2))1 I q (e2) = f (g (x)) I x = f (y) I h (y), 

y = g(x), 

and compute f (y )/h (y) for large values of y: 

~~~) = f (In ~2 + g') I p2 _t dx2f (In;:+ g') I x2(p2 + x2}, 

y = In (p 2 1 m2 ). (32) 
Since we are concerned with the case of infinite 

renormalization, the values K2 "" p2 are important 
in the integral of formula (30), so that we may pull 
out of the integral the slowly varying function f at 
the point ln (p2/m2 ) + g'. Then 

1 
~(e2)=f(Y)Ih(y);::::;; 1 ( 21 2)= 1fy= 1fg(q(e2)). 

n p m (33) 

The function a ( K2, e 2 ) may in this case go to 
zero for ·increasing e2, if de ( 1, e2 ) .0. ( e 2 ) - 0, 
or it may stay finite and even increase. To re­
solve this question, we must understand the be­
havior of de ( 1, e2 ) for large values of the charge, 
which cannot be done in the framework of our tech­
niques. It may turn out that, if de ( 1, e 2) .0. ( e2 ) 

- 0, that part of a ( K2, e2 ) becomes important 
which corresponds to the terms neglected in (4), 
as these vanish for m 2/k2 - 0. Nothing is known 
about the dependence of these terms on the charge. 
It should be noted, however, that by virtue of for­
mula (9) the imaginary part of these terms for 
k2 < 0, which is also the imaginary part of the 
total a, is a negative quantity and can, therefore, 
never be greater (in terms of absolute values ) 
than the calculated part of a. In general, the case 
for which a ( K2, e2 ) - 0 is physically very im­
probable. Indeed, the function a ( K2, e2 ) is a 
sum of the squares of the moduli of the electro­
magnetic-field-operator matrix·elements which 
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connect such states as, for example, the vacuum 
and an electron -positron pair. The condition 
a ( K2, e2 ) - 0 will imply, in particular, that as 
the charge increases, the cross section for the 
scattering of an electron by another electron with 
arbitrary momentum transfer much larger than m2 

decreases. If, on the other hand, the momentum 
transfer goes to zero, the quantum effects should 
disappear and the cross section should be of the 
Rutherford type, i.e., it should increase rapidly as 
a function of the charge! But this means that the 
cross section must change very rapidly in a rela­
tively small interval of momentum transfers near 
k2"' m2. 

All this seems, of course, very strange; how­
ever, one could argue that it is not unnatural to 
assume that electrodynamics has limited applic­
ability for large charges. In any case, the idea 
that the theory becomes gradually worse as the 
charge increases seems rather phantastic. 

There are thus two possibilities left, and the 
choice between these two is apparently very diffi­
cult. In the case v > 0 we have for d0 the func­
tions (22) and for a ( K2, e2 ) formula (24), and in 
the case v = 0 formulas (29) and (31), respec­
tively. These formulas have the character of ex­
pansions in terms of quantities which are small 
for strong coupling. 

3. CONCLUSION 

Our whole analysis of the behavior of the D 
function hinges on the possibility of making the 
renormalizability of the theory consistent with 
Lehmann's spectral representation (i.e., with the 
analyticity properties of the theory ) . By them­
selves these two suppositions are indeed not con­
tradictory; however, this does not mean that the 
theory is internally consistent if it is examined 
fully, i.e., if we consider the Hamiltonian. For a 
better understanding of this circumstance we 
briefly outline the arguments of Landau and Pom­
eranchuk1 concerning the "zero charge" in the 
light of our previous discussion. 

As is known, 2 the connection between the renor­
malized and the bare charges e2 and e~, res pee­
tively, is (in our notation) 

e~ = h [g (q (e2)) + L], (34) 

where L = In ( A2/m2 ) and A is the cut-off mo­
mentum. In going over to a local theory A- oo, 

and e~ increases from small values until it 
reaches the value a = h ( 0 ) [the root of the func­
tion g(x), seeFigs.1and2] forL=-g[q(e2 )]. 

In the neighborhood of this point the unrenormalized 
Green's function is equal to 

e~d0 (A2 / k 2 , e~) = h [- (L- ~) + g (e~)]::::::: h [- (L- ~)I 
(35) 

and is, therefore, independent of e~. 
It is important that even if h has exponential 

character ( v ;ot 0 ), this assertion remains true, 
since g ( e~) is small in comparison with unity 
for e~"' a. On the other hand, e~d0 is the vac­
uum expectation value of the T product of two op­
erators U = e0A (A is the electromagnetic poten­
tial ) , and the fact that e~d0 is independent of e~ 
seems to be due to the neglect of the free term in 
the Lagrangian. (The latter is proportional to 
e02u+u, whereas the interaction is of the order 
of u+u.) Furthermore, in order to avoid a "zero 
charge", the function g ( e~) should have the be­
havior shown in Fig. 2, which implies that e~d0 
will again start to depend on e~. This seems sur­
prising, not so far as the Lehmann expansion or 
the renormalizability property is concerned, but 
looking at it within the framework of the Lagrang­
ian formalism; for the neglect of a term "'e02u+u 
in comparison with a term "'u+u can hardly be­
come less justifiable as e~ increases. There is 
thus good reason to assume that the functions g 
and h do not have the behavior shown in Figs. 1 
and 2, if they are determined with the help of the 
Hamiltonian. Nevertheless, regardless of whether 
the zero charge does or does not exist in reality, 
it seems useful to study the general features of the 
theory. We summarize the results obtained: 

f) In the real electrodynamics with e2 = 1,1137 

at energies much larger than the critical value 
[ ( e2/3) In (k2/m2 ) » 1] the function de is either 
independent of the charge or exponentially small 
[formula (20)]. The last case corresponds to a 
non -logarithmic divergence of the exact expres­
sions. 

2) In an electrodynamics with a very large 
coupling constant it is possible (with an accu­
racy within a numerical constant ) to determine 
the dependence of the function d0 on the energy 
in a fairly wide region. It has either the form (22) 
[the corresponding function a is given by (24)] or 
the form (29) [the function a is given by (31)]. 

In conclusion I should like to thank V. N. Gribov, 
K. A. Ter-Martirosyan, I. T. Dyatlov, and V. M. 
Shekhter for numerous useful comments. 
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