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We consider the relaxation of the magnetic moment and the equalization of spin and lattice 
temperatures of ferrodielectrics with a weak magnetic anisotropy in weak magnetic fields. 
We show that the magnetic dipole interaction establishes the equilibrium of the magnetic 
moment, both as to its magnitude and as to its direction. The relaxation time of the abso­
lute magnitude of the magnetic moment is in this case of the same order of magnitude as 
the characteristic time of rotation of the magnetic moment to its equilibrium direction. 
The relaxation time for the equalization of spin and lattice temperatures is also evaluated. 

l. Akhiezer, Bar'yakhtar, and Peletminskil1 pre­
sented a general theory for the relaxation of the 
magnetic moment in ferrodielectrics; this theory 
was based upon the fact that there are two types 
of interaction between spin waves: the strong ex­
change interaction and the weak relativistic inter­
actions (magnetic dipole interaction and interac­
tions caused by the magnetic anisotropy). 

The exchange interaction leads to the establish­
ment of a Bose distribution of the spin waves with 
a non -equilibrium value of the magnetic moment, 
but the weak interactions lead to the establishment 
of an equilibrium value of the magnetic moment 
both in absolute magnitude and in direction. In the 
cited paper this scheme was applied to an evalua­
tion of the relaxation time of the magnetic moment 
in those circumstances where the magnetic aniso­
tropy constant {3 and the external magnetic field 
H0 were sufficiently large. Under those circum­
stances one can easily check that spin waves with 
wave vector k = 0 cannot split up into two spin 
waves with wave vectors k and - k. The strong­
est of the "weak" interactions, which describe the 
processes of the combination of two spin waves 
into one and the splitting of one spin wave into two, 
can therefore not cause a change in the number of 
spin waves with k = 0, which determines the com­
ponent of the magnetic moment of the body perpen­
dicular to the axis of easiest magnetization. 

Because of this, one invokes the relativistic in­
teractions, which describe processes involving a 
large number of spin waves one of which has a 
momentum k = 0, to explain the relaxation of the 
transverse component of the magnetic moment. 

The situation is different in crystals with a 

small magnetic anisotropy constant {3 in weak 
magnetic fields ({3 + H0 /M0 < 47T/3 ), since under 
those conditions the splitting of a spin wave with 
k = 0 into two spin waves now turns out to be pos­
sible. Because of this it is not necessary, when 
describing the relaxation of the magnetic moment 
in such crystals, to take the interactions describ­
ing spin wave-spin wave scattering into account, 
and it is sufficient to restrict ourselves. to the 
magnetic dipole interaction which describes the 
splitting of one spin wave into two and the amalga­
mation of two spin waves into one. 

We note, finally, the following fact: it is well 
known (see Neel2 ) that many ferrites, which at 
low temperatures can be considered to be dielec­
trics, have a complicated magnetic structure, i.e., 
they are described not by one but by several mag­
netic sublattices. This leads to the occurrence of 
high-frequency branches of the magnetic energy 
spectrum with a large activation energy, as well 
as a low-frequency branch (without an activation 
energy). The contribution of these high-frequency 
branches to the thermodynamic and transport prop­
erties of ferrodielectrics at low temperatures is, 
of course, exponentially small. One might think 
that the strong exchange interaction y ( M1 • M2 ) 

between uniformly magnetized sublattices could 
essentially change the interactions between low­
frequency spin waves. This would thereby lead 
to an influencing of the magnetic structure of the 
transport and relaxation properties of a ferrodi­
electric at low temperatures. 

A detailed analysis (see Appendix) shows that, 
indeed, the interaction between low-frequency spin 
waves, which is caused by the energy of exchange 

905 



906 V. G. BAR'YAKHTAR and G. I. URUSHADZE 

between sublattices, turns out to be of the same 
order of magnitude as the relativistic interaction 
describing spin wave-spin wave scattering. This 
enables us to neglect the magnetic structure of a 
ferrodielectric with weak anisotropy when we study 
its relaxation processes. 

2. The Hamiltonian of a ferrodielectric with 
cubic symmetry can be written in the form 
;;e = ;;e<s) + ;;e<P) 1 

;;e<sl = I[..,!- oc. aMI aMI + -~- (M2 M2 + M2 M2 
J 2 axi ax1 2M~ x Y X z 

2 2 H2 ] + MyMz) + S1t dv, 

(p) 1 6ca2 ~ ( aM1 aM1 , aM1 aM1 J :J£ = ..,-- 01 -- U;k + 02 --Ukk dv, 
2 [.LM 0 ax1 axk ax1 ax1 

(1) 

where M is the magnetic moment density, H the 
magnetic field acting in the crystal, uik the de­
formation tensor, a a constant connected with 
the exchange integral [a = ( ®c /J.LMo) a2, where 
®c is a quantity of the same order of magnitude 
as the Curie temperature, a the lattice constant, 
M0 the saturated magnetic moment, and J.L the 
Bohr magneton], and 61 and 62 are the magneto­
striction constants. The first term in Eq. (1) is 
the magnetic energy of the ferrodielectric and the 
second term the exchange part of the magnetostric­
tion energy which is connected with the inhomoge­
neity of the magnetic moment. Kaganov and Tsu­
kernik3 have shown that one can neglect the energy 
of relativistic origin, which describes the magneto­
striction effect when there is a uniform magneti­
zation, when one considers relaxation and transport 
processes in the temperature range T » 27rJ.LMo 
"' 1 o K. 

If we now make the well-known transition (see 
Holstein and Primakoff4 and also Kaganov and Tsu­
kernik5) to the creation and annihilation operators 
of the spin waves, ck, and ck, we get 

;;e<8l = ~ CD12,3c; c; c3 t. (kd-k2-k3) + c.c., 
], 2. 3 

;;e(l) = ~ 
1, 2, 3, 4 

where we have used the following notation 

Bk = 2rrp.M0 sin2 0ke- 21"'k, 

(2) 

(3) 

(4) 

(5) 

<D (2 M )' 1'v-·~, · 2° ( -iQ, • '"'' '>( • • • 12, a = - rrp. (J. 0 • [ sm vi e Ut -+- e V1 u2ua-: -v,~v,1 ) 

+sin 262 (e-'"''u;'+ /"''v;) (u~u 3 + v~v3)+sin 203 (e'9 'Ua 

+ e-'•·va) ( v; u; -;- v:u~) I, (7) 

(8) 

vk = - e21'-'k V(Ak- sk) 1 2sk, 
(9) 

Cj = Ckj , Oj and cpj are the polar angles of the 

vector kj. Since ~12 , 34 is very small for small k 
("' ak2 ) the main role in the collisions caused by 
the operator x<4> will at not too low temperatures 
( T » 27rJ.LMo) be played by spin waves with large 
wave vectors: Ek"' T, ak2 "' T/J.LMo » 1. One 
sees easily from (6) and (9) that for such values of 
the wave vector I Vk I « I Uk I f'::j 1. 

The considerations given above refer also to 
the Hamiltonian describing the interaction between 
spin waves and phonons, x<P). The Hamiltonian 
x<P) expressed in terms of creation and annihila­
tion operators for the spin waves and the phonons 
is of the form 

;;e<Pl = ~ '¥12. ac; c2bat. (k1- k2- f3 ) -l- c.c. (10) 
1. 2. 3 

(11) 

the index 3 indicates the wave vector f3 and the 
polarization s of the phonon, e3 and w3 are the 
polarization unit vector and the frequency of the 
phonon, b3 and b3 are the creation and annihila­
tion operators for the phonons and p is the den­
sity of the medium. 

Using Eqs. (4), (5), and (10) for the Hamiltonians 
3C(3), x<4>, and x<P), we can now write down the 
transport equation for the number of spin waves n1 

with wave vector k1 

• • co!!_ L(e) , (r) , (p) 
flt =c n1 = k, {n} -i-Lk, {n}-;- Lk, {n, N}, 

- k3 -- kj). 

Ltl {n} ~~ g; ~ {2 i cD12 ,:1 j 2 [(n1 + I) (n 2 -:- I) n3 

2,3 

- ntnz (n:J -\- 1)1 o (s1 + s2 - s,1)!!. (k1 + k2- k3) 

+! Cll2a.t\ 2 [(nt + I) n2n:1 -

(12) 

(13) 

-n1(n2+ l)(n3 + l)]o(s2 -\-s3 -s1)t..(k 2 -i-k3 -k1)}, 

L <Pl { ', -- :!."- -.;, { nr 12 ( ' I) N (14) 
k, n, iv} -- T LJ \:t 12 a [ flt -, fl2 :1 

2,:1 

-n1 (n2 +I) (N,l _j_ l)]o (s1-- z2 -- 1ltoJ:1) t. (k1 -- k2 --fa) 

+I 'I'12:1 ' 2 [(nt---;-- I) n2 (N3 + 1)- n 1 (n 2 -: 1) N 3 ] o (s1 + hc.J,1 

(15) 
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N3 is the number of phonons with momentum f3 

and polarization s. The operator Lke) describes 
the spin wave-spin wave scattering processes 
caused by the exchange interaction in the transport 
equation; the operator L{[) describes the recom­
bination of two spin waves into one and the splitting 
up of one spin wave into two, which are caused by 
the magnetic dipole interaction; the operator Lff> 
describes the emission and absorption of a phonon 
by a spin wave. Starting from Eqs. (13) to (15) for 
the operators Lke), Lkr), and Lff> one can show 
by a treatment similar to the one in reference 1 
that in the temperature range ®c » T » ®c 
x (J.LMo /®c )4/ 7 ~=:::: 10° K the main role in the trans­
port equation is played by the operator Lke) 
(Lke) » L{[>, Lff>>. To a first approximation 
one can thus use the equation 

L~l {n} = 0 

to determine the spin wave distribution function. 
The solution of this equation is of the form 

{
. n0 , k = 0, 

nk = (exp {(zk- T) ITs} -1]-', (16) 

where y and n0 are arbitrary constants which 
can be connected with the mean values of the ab­
solute magnitude of the magnetic moment <~2> 
and of the dispersion of the component of the mag­
netic moment < ID2i > perpendicular to the axis 
of easiest magnetization (the z axis ) 

(ID22 ) = <[~ M (r, t) dv r > 

= !Vl0V [ M 0V- 2p. ~! Vk 1
2 - 2 ~ fLk nk J, 

k k 

(ffi?~) = (ID2;:> + (ID22 ) = 2p._n0 M0V, 

1.1.k =;J.A/zk = -askjaH. (17) 

The presence of weak interactions ( LftP), L{[)) 
causes the quantities y, Ts, Tp, and n0 to 
change in time, but slowly compared to the estab­
lishment of the distribution (16). 

Proceeding as in reference 1, we can obtain the 
following equations to determine the quantities y, 
n0, and ~T = Ts -Tp 

t:d + G, r- ~>olio I c = 8-yy y + B-ro no, 

where 

--~~(5,'.)...!:::.__ .I..)'/, 
Cs - 32 -'1, a3 I e , 

~~ \ c ! 

are the spin and phonon specific heats, Eo the en­
ergy of a spin wave with k = 0, and 

= 16~A ~ i <Dk, -k; 0 1
2 (1 + 2nV !Lk o (80 - 2sk), (20) 

k 

Brr = (_!__ + _!__) ~ e:k (~) 
c8 cp k dt1T 0 

_ 2rrli cp + cs ~IT' j• 2 ( o , 1) - - T2 _c_c_ L.J 123 W3 n, -r 
p s 123 

(21) 

__!__ = - (~Lo) = ~rr ~I <Dk, -k; o j• (I + 2nV o (e:o- 2e:k), 
"' no o k 

A = ( 1/cs + 1/cp)T /G2p.. (22) 

Assuming the quantities ~T. y, and n0 to change 
with time as e-A.t we find the following expressions 
for the relaxation constants 

a, Brr + Byy ± V<G, Brr- Byy)2 + 4BrrByy a. 
t-u = 2 (G2 - G1 ) ' 

),3 = ..!.. 0 (23) 
"'J. 

fLMo <:g: ~ + Ho <:g: 1 
T M0 

~ + z: "' 1. (24) 

"A = f (p:•) (o~ + 2(o1 + o2)
2

) ( ~ r, 
2) • ( 2) [ (p=•) oq ~) exp - 4:~c • 

where ®n is the Debye temperature, ®t = stli/a, 
and st the velocity of a transverse sound wave. 

It is clear from Eqs. (22) and (23) that there­
laxation time of the quantity n0 is determined by 
the process where a spin wave with wave vector 
k = 0 splits into two spin waves with wave vectors 
k and - k. This process can occur when the en­
ergy conservation law 

where Eo is the energy connected with the uniform 
precession of the magnetic moment, is satisfied. 
Kittel7 has shown that the uniform precession fre-
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quency w0 and thus Eo= llw0 is strongly shape 
dependent. If we consider a ferrodielectric occu­
pying one half of space bounded by one of the crys­
tal planes with the field H0 in this plane, then 

8 0 = :1, V(H 0 + ~M0) (H 0 + ~M0 + 4n:M0) • (26) 

We can obtain the expression for Eo from Eqs. 
(3) and (6) by putting k = 0 and ek = rr/2 which 
corresponds to a quantum mechanical considera­
tion of uniform oscillations of the magnetic mo­
ment. 

In evaluating the energy spin wave Ek we neg­
lect the influence of boundary effects* which is 
permissible provided the spin-wave mean free 
path l is much shorter than the dimensions of 
the specimen L 

l = v / w<e> = (8c I T)'1'a~ L. (27) 

When condition (27) is satisfied, the average spin 
wavelength X ""' ( ®c /T )112 a is at the same time 
much shorter than the dimensions L of the body. 

Using (26) one sees easily that the energy con­
servation law Eo = 2Ek is satisfied, provided 

(28) 

We do not give here the detailed calculations, but 
quote the final results for A.3 

( 1"Mo (~'-Mo)';, T H0 
T -e e ' ~ + M ~ 1, 

) 1 J c c 0 

'3 = "j_ = lwz 1'-~o ( 1'-~o t £ C~1t-?-Z: ?', ~1t - p-~ 1. 

(29) 
The quantity T 1 tends in this approximation to 

infinity for {3 + H0 /M0 = 4rr/3, as should have been 
expected. This means that it is now necessary to 
take the relativistic interactions which describe 
the spin wave-spin wave scattering into account 
to evaluate Tl, as was done before.1 Using Eq. 
(18), and also Eq. (19), we get the following for­
mulae which describe the change in time of the 
quantities < ~2 > , < ~i >, and D. T 

" -2 
!:..T _~T" -l-,t--1- (21t)' ~~ ec)'!' (\1Jl0)-Wl 
T - T e ' 3f (3!2) ~ (3/,) G1 \ T . (M0 V)2 

v ( -i ... l -1"1) -j. ~ I"Mo (~'-Mo)'h 
n e . -e 2G 1 li.(A3 -A1)(27t+p+H0 ;Mo) T 

" (\JJl}_o> [e-i.,t _ e-i.,t -:-~ (e-1-d _ e-i.,l)] (30) 
'' (M0 V)2 ' /,1 ' 

(\JJlZ) _ W/2 (\JJl~) - Wi2 _, 1 3r (3/2) ~ (3/2) (l:J_)2 (._I__.)'/, 
(MoV)Z (MoV)' e 1 + 2rc2 A, ec I 

/ !:..To (e-1.,1 _ e-i·d)+ 3f (3 /z) ~ (3 /z) 1'-Mo 
· T 8rc2 h(As-Al}(27t + ~ + H0 /M 0 ) 

• (~'-Mo). •;, ('_I__.) <\JJl}.o> (e-'•1 _ e-i.,t), 
)< 8 8 (M V)2 

c c ' 0 

(31) 

(~l) = <~lo) e-1-,l, (32) 
*We are indebted to M. I. Kaganov for this remark. 

where D.T0, < ~io>, and <~ij> are the initial 
values of the temperature difference, the trans­
verse components, and the magnitude of the mag­
netic moment of the body, while ~ is the aver­
age value of the absolute magnitude of the mag­
netic moment at the given temperature. 

It is clear from the formulae given here that 
2/A.3 is the relaxation time of the transverse com­
ponent of the magnetic moment of the body. 

To elucidate the physical meaning of the relax­
ation constant A.1 we assume that D. T0 = < ~io> 
= 0. We have then 

<~z) _ ~2 = [(~~> _ -i.fu2] e-i.,t_ (33) 

Under those initial conditions 1/A.1 has thus the 
meaning of the relaxation time of the mean square 
of the magnetic moment of the body. 

If the initial data are such that <~io> = 0 
and <~ij> = ~2 then 

(34) 

and we must treat the quantity 1/A.2 as the time 
for equalizing the spin and lattice temperatures. 

Let us estimate the magnitudes of A.1o A.2, and 
A.3. Putting 

M0 ~ 103 emu, !.L = 10-20 emu , 

p = 10g/cm3, a= 2·10-8 cm, 
we get 

}..1 ~ }..3 ~ 108 (T I 8c) sec -,1 ),2 ~ 1011 (T I 8c)';, sec-~ 

Provided {3 + H0 /M0 is not too close to 4rr/3, the 
relaxation times of the absolute magnitude and of 
the transverse component of the magnetic moment 
are thus of the same order of magnitude. One 
should describe such a relaxation of the magnetic 
moment phenomenologically by the Bloch equation. 
In this equation is contained the difference between 
the relaxation for the case of a small anisotropy 
and weak fields and the relaxation in the case of 
large anisotropy or strong fields, when the estab­
lishment of the equilibrium value of the magnetic 
moment is appreciably faster than the rotation of 
the moment towards its equilibrium direction. 

In the temperature range T « ®c (JLMo /®c )41 7 

the main role in the transport equation is played 
by the operator Lf{) { n}. In ferrodielectrics 
with a small magnetic anisotropy the equilibrium 
value of the magnetic moment is thus at these tern­
peratures established at the same time as the 
Bose distribution of the spin waves . 

The authors express their deep gratitude to 
A. I. Akhiezer under whose guidance the paper 
was prepared and toM. I. Kaganov and V. M. 
Tsukernik for valuable discussions. 
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APPENDIX 

We consider a ferrodielectric with two magnetic 
sublattices, the Hamiltonian of which can be written 
in the form 

(A.l) 

where Mj is the magnetic moment of the j -th 
sublattice, H the magnetic field acting in the fer­
rodielectric, and a 1, a 2, a 12 , and y quantities 
which are connected with the exchange integrals 

We do not write down here the anisotropy en­
ergy which is inessential for the following. 

Putting 

H = H0 + h 

M, = M~, > 0, M2 = - M:o > 0, 

[ai(r, t), ar(r', t)l = 13/j·o(r-r'). (A.4) 

Using these formulae one can express the Hamil­
tonian 3C in terms of the variables akj and akj 

ak· =-1-LJa·(r t)e-ikr 
I V'f, k I ' ' 

+ - _1_ '\.1 + ( t) 'kr ak.- ,1 .L.Ja. r, e' . 
I V ' k I (A.5) 

We then get 

(A.6) 

where 

We have neglected here the influence of the mag-
where Moj is the equilibrium value of the mag- netic dipole interaction on the spectrum; taking it 
netic moment of the j-th sublattice, H0 the con- into account does not change the result, but com-
stant magnetic field, in the direction of the z axis, plicates the calculations greatly. 
and m and h small corrections to Moj and H0, The Hamiltonians 3C<3> and 3C(4) contain, re-
we find spectively, three and four operators akj and akj· 
, _ \ r 1 am, om, 1 om 2 om 2 am, am, The Hamiltonian 3Co which is quadratic in the 
:7t- .lt2a, dx1 ax1 + 2 <Xz ax, ax; + 212 ax1 ax1 operators akj and akj can be diagonalized by a 

Mz z , .,..z z H ( z z) h2 } d Bogolyubov canonical transformation9 
+ r 01 m2-;- rmo2 m, + rm, illz- 0 m, + m2 -;- Sr. V 

Going over from 
ponents 

+ • + ' * * (A 8) 
h . . ak, = UuCk, V12 c_k•' ak2 = u22 Ck2 --r v. c k, . 

m and to their Fourier com- - ·1 - 1 

(A.2) 

and using the equations of magnetostatics, we get 
,y; __ '\.1[1 k2 ' 1 k2 ' k2 
J& - .L.J 2 a, mk, m_k, -,- -y<Xz mk2 m-k2-. IX12 mk, m-k2 

k 

-+- rV''• (M~, m~2 + M~2 mt,) t1 (k) + rmk, m-k2 

- nv'1'(m~, -1 mL) t1 (k) + (2rr 1 k2 ) (mk, + mk2. k) 

;, (m-k, + m-k2• k)J. (A.3) 

We now define the operators of the magnetic mo­
ments m 1 and m 2 by the equations 

m, = (2r.~.M,(' ( 1 -rw; a, 1 2M,)'1' a, 

;:::;:(2(.l.M1)'1z(a1 -1w; a,ar/4M,), 

m; = (2:J.Mt)'f, a; ( 1 - :J.a; a, j 2M,)'f, 

;:::;: (2[.!.M1)'1• (a; - (.l.a; a; a 1 / 4M1 ), 

m~ = M~- M 1 = - !.l.a;; a,, 

m; =(2r.~.M2)"•(1-(.l.a;a2j2M2 )'/,a2 

= (2:J.M2)'',(ae- :.1.a; a 2a2 /4M 2), 

m; = (2r.~.M2)'1· a; ( 1 -lw; a2 / 2M2 )'f, 

~ (2:J../\Jf2r'z (a; -:..~.a; a; a2 /4M2), 

where the operators ckj and ckj satisfy the 
commutation relations 

[cki> ct.rl = oii' t1 (k- k') 

and where u and v satisfy the usual conditions 

I un'i2 -I V12 \2 = \ U22 \2 -I V21 i2 = 1. 

If we use the equations of motion 

akj = (i In) U!f, akil. 

we can obtain another four equations to determine 
u and v, and also the eigenvalues of the Hamilto­
nian 3C0• These equations are of the form 

lln Sk1 = Ak1 11 11 + Bk V21• 

- Vn Ek1 == Ak2 Vz1 + Bk llu, 

and hence 

llzz 2kz = Ak2 U22 --r Bk V12 , 

- ul:.! Skz = Ak1 V12 -~ Bk u:!'2, 

sk; 1,2 = [(Ak1 + Ak2)2/4 -- B~)'lz ± (Ak1 - Ad i 2, 

v,z =~ V21 =.(A2k- ske) · [B~ - (Ak2 - sk2) 2J'i'. 

lln ~' U22 = - Bk [B~ -- (Ak2 - sk2)2J'-'. (A.9) 

Since y » 1, we have* 

*We note that the expression for 8 1 given in reference 8 
is incorrect. 
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s1 =(tL/ M)(oc1k2 Mi + oc2k2 M~- 2oc12k2 M1 M2) + (J.H, 

s2 =fLrM- [LH + ([LM1M 2 / M) (ocl + oc2- 2ocl2) k2 , 

v12 = v21 = (M2 / M)'l•, uu = U22 =- (Ml / M)'f,, 

M = M1 -M~> 0. 

We see that one of the branches of the energy spec­
trum has a large activation energy caused by the 
exchange interaction between the sublattices. The 
contribution from the oscillations of the magnetic 
moments described by the variables ck2 and ck:2 
to the thermodynamic and transport properties of 
the ferrodielectric at low temperatures is thus ex­
ponentially small, and when one studies these prop­
erties of the ferrodielectric one need only take into 
account the low-frequency spin waves, described 
by the operators ck1 and ck:1• 

The interactions between the low-frequency 
spin waves themselves, caused by the exchange 
energy connected with the inhomogeneities of the 
magnetic moments and by the magnetic dipole en­
ergy, have the same structure as in the case of 
a ferrodielectric with one magnetic sublattice. 

As regards the interactions caused by the ex­
change energy between sublattices when the mag­
netization is homogeneous, 

y w'\ [(M")'f, + + + + ) :Jetnt = -T j Mr (a1 a1 a1a2 + a1 a1a1a2 

( Ml)'/,( + + + + )+4 + + '\d + M, a1 a2 a2 a2+a1a2 a2a 2 a1 a1a2 a2~ v, 

one can use (A.5), (A.8), and (A.9) to show that that 
part of it which describes the interactions of the 
low frequency spin waves with one another does not 
contain the large parameter y and is of the form 

;Hint = ~ <Dk,k,k,k. <,1 c~,1 Ck,r ck,l!! (k1 + k2- ka- k4) · 
ktk2k3k, 

where 

<Dk,k,k.,k, ~ tJ-2 ;v. 
· 'W~yt) is a small correction compared with I.e., ~In 
JC< 3>. This makes it possible to neglect the mag­
netic structure when studying the low-temperature 
properties of ferrodielectrics. 
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