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We have obtained a dispersion relation that determines the propagation of plane electromag­
netic waves in a plasma beam moving in a fixed plasma along the lines of force of a constant 
and uniform magnetic field. We have found the damping (or build-up) coefficients of the 
rarefied plasma moving along the magnetic field in a non-dispersive dielectric. 

RECENTLY several papers have been published formly with respect to the medium II and in a 
on the propagation of electromagnetic waves in straight line along the x axis of the frame K with 
interpenetrating moving media, in particular in a velocity v, so that the x and the x' axes co-
plasma beams moving in a fixed plasma or in a incide and are parallel to the lines of force of the 
non-dispersive dielectric. 1- 3 The range of prob- external magnetic field H, while the y' and z' 
lems for which suitable solutions have been given axes are parallel to the y and z axes. 
in sufficient completeness and for which expres- The electrical properties of medium I in the 
sions have been obtained for the damping (or frame K' are characterized by the tensor Efj. * 
build-up) coefficients of the waves is all the same Since we have assumed that media I and II are 
very limited. We attempt in the present paper to gyrotropic, the tensors Eij and Elj are Hermitian 
remedy this situation partly by solving the problem and thus Eij = Eji and Eb = Ejf. As we have in 
of the build-up (damping) coefficient of plane view a plasma in a constant external magnetic field, 
electromagnetic waves propagating in a plasma we shall also assume4 that E 12 = E 13 = Eta = Eb = 0. 
moving in a non-dispersive medium along the lines Once we know the tensors Eij and Elj• we can 
of force of a constant and uniform magnetic field. determine the tensors of the moments (the polari-

We shall determine the damping coefficients of zation and magnetization tensors) Mij (II, K) and 
the waves by a phenomenological method proposed Mij (I, K') in the fixed and the moving media. The 
earlier. 2 The main point of this method is that we components of the electromagnetic fields D, B, E, 
first find the phenomenological equations that re- and H which are defined in the frame of reference 
late the electromagnetic fields in the interpenetrat- K, enter, of course, also into the tensor Mij (II, K), 
ing media. By combining these equations with the and into the tensor Mij (I, K') the components of 
Maxwell equations describing the propagation of the fields D', B', E', and H' in the frame of ref-
plane electromagnetic waves, we can obtain a dis- erence K', which are found from the unprimed 
persion relation of the form f ( w, k) = 0, where fields by a Lorentz transformation. Using a Lorentz 
w is the frequency of the electromagnetic wave transformation to transform the tensor of the mo-
and k its wave vector. Solving the dispersion ments Mij (I, K' ) to the frame of reference K, we 
relation we find the required damping coefficients can find the resulting tensor of the moments in the 
for the wave. frame K 

We shall derive the dispersion relation for the 
case where a non-magnetic, anisotropic, and gyro­
tropic medium I moves in a fixed non-magnetic 
medium II, which is also anisotropic and gyro­
tropic. (A plasma in a constant magnetic field 
has such properties.) The medium II is at rest 
in the laboratory frame of reference, and its elec­
trical properties are characterized by its dielec­
tric -constant tensor E ij. The medium I, which is 
related to a frame of reference K', moves uni-

Mil (I, II, K) = Mii (II, K) 

(1) 

*We assume that the effective electrical field in the pres­
ence of two media is equal to the average macroscopic field, 
since the polarizations are additive only in that case. It is 
well known that the effective and the average macroscopic 
fields are equal in a plasma and also in any other sufficiently 
rarefied medium. • 
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where Hij and Fij are the electromagnetic field 
tensors in the frame of reference K (refrence 5; 
cf. footnote on preceding page). 

After substituting into the Maxwell equations 
which contain the curl operator the expressions 
for plane waves, these equations become 

D = -n[vxH], 8 = n [vxE], (2) 

where n is the refractive index of the medium in 
the frame of reference K, and v is a unit vector 
in the direction of propagation of the wave. The 
condition that there be a nontrivial simultaneous 
solution of the algebraic equations (1) and (2) for 
the 12 components of the electromagnetic field 
vectors means that the determinant of the set (1) 
and (2) must vanish. The 12-th order determinant 
easily reduces to a 4-th order one. Writing the 
latter out in detail we can get, after straightfor­
ward, though tedious transformations, the follow­
ing dispersion relation 

(en+ €~1- I) {(s22 + s;2T2- n2 cos2 8) (s33 + s:Sr2 - n2) 

+ (s23 + S~j2) 2]- n2 sin2 8 [(€22 + €;2- ~2€22€;2) 

X (saa -f e;a'\'2- n2) + (e2s + e;a'\')2 

- ~ 2 ( E;2E;s + E22e;i'\'2)) = 0; 

r = l-n~cos8, ~ = v Jc~ (3) 

The most interesting case of propagation of 
electromagnetic waves, which can be studied by 
using Eq. (3), is the case where a plasma moves 
in a fixed plasma along the lines of force of a 
constant and uniform magnetic field. In the fol­
lowing, however, we study the simpler case where 
the plasma moves along the magnetic field in a 
non-dispersive dielectric. The dispersion rela­
tion (3) simplifies then considerably and one can 
obtain relatively simple solutions after a few ad­
ditional assumptions. 

Assuming that the fixed medium is a non-dis­
persive dielectric ( E23 = 0, Eij = E), we get by 
rearranging the terms in (3)* 

*The expressions for et",, E;t2 , and E;t, were obtained by 
taking into account the fact that in going to the system of 
reference K', which moves with the plasma, we must substi­
tute in the expression for the components of the tensor C:.J 
the frequency w' transformed according to the Doppler formula 

w' = w(l- n(3 cos (J)/V'l- (3'. The frequency w~ = wHVl- (3' 
is the gyro frequency in the plasma beam from the point of view 
of an observer in the frame of reference K. The occurrence of 
the factor ~is connected with the Lorentz transforma­
tion of the time. 

E (e- n2)2 + €;2 (e- n2) (q2 +X)+ '\'2X (e;~ + e;;) 

+ s:1 [(s- n2) (e- n2 cos2 8 + e;2r 2) 

+ e;2r 2 (e- n2 cos2 8 + e;2r 2) + e;h4 J = 0; 

where 
"' , 2 ,_, 
~1 = e11 - I = -"'o (1- ~·) J (ro- ro)2 , 

e:;2 = -"'~ j ((ro- ~·- ro~), 

iii = kv cos 8 = wn~ cos 6. 

The dispersion relation (4) establishes a con­
nection between the frequency w of the electro­
magnetic wave and its wave vector k. In order 

(4) 

to establish the presence of damped (or growing) 
waves and to find the damping coefficient it is 
necessary to solve Eq. (4) for w with real wave 
numbers k. The presence of plane electromag­
netic waves which are damped in time is indicated 
in this procedure by the existence of complex solu­
tions for w. * 

We study in the following the solutions of the 
dispersion relation (4) for a rarefied plasma beam, 
i.e., under the condition that the plasma frequency 
w0 = ( 47l'e2N/m )112 is small compared with the fre­
quency of the wave w and compared with the char­
acteristic frequencies w = kv cos e and wN­
When, however, we go over to the limiting case of 
no magnetic field ( wH = 0 ), we shall assume that 
w0 « w, w. In solving Eq. (4) we must distinguish 
between two cases. In the first case none of the 
denominators in the expressions for the Eij tends 
to zero as w0 - 0, while in the second case at 
least one of the denominators in the Eij tends to 
zero as w0 - 0. We study first the character of 
the solutions of Eq. (4) for the first case. 

We look for the solution by the method of suc­
cessive approximations, writing for the refractive 
index n = ..f€ + 6..n. Substituting this expression 
into (4) we find 

4e2 (~n)2 - 2 Ys [e;z(er2 + x) + e;te sin2 8] ~n 

+ i 2X ( e;: + e;;) 
+ 8;2€;1'}'2€ sin2 8 + E;;€;1'\'4 = 0. 

*If we solve the dispersion relation for k for real values 
of w, as was done in reference 3, the solutions for k can 
in principle also be complex. For the case of infinite media, 
considered here, the selection of solutions with complex k 
which correspond to a true build-up is difficult, since complex 
solutions for k can result from the "entrainment" of waves by 
the moving medium. 
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If we separate explicitly the factor containing w0 

from the coefficients of ( ~n )2, of ~n. and of 
the constant term, this equation becomes 

a211n2 + 2a1w~!1n + a0w~ = 0, 

where the coefficients a0, a 1, and a2 no longer 
contain the parameter w0. The solution of this 
equation, which is quadratic in ~. is such that 
~n "' wij. Since w, n, and the wave number k, 
which we fix and assume to be real, are connected 
through the relation wn = kc, we can assert that 
the correction to the frequency w of the wave, due 
to the presence of a plasma beam, must also be 
of the order wij. 

We shall show in the following that in the second 
case, when the denominators in the Eij tend to 
zero as w0 - 0, i.e., when some peculiar reso­
nance takes place, we obtain a correction to the 
frequency of the order w0, or an even more appre­
ciable one. This means that if the solutions of the 
first kind include complex solutions, the damping 
of the waves determined by them will for rarefied 
plasma beams be negligibly small compared with 
the damping of the waves as determined by solu­
tions of the second kind. When solving the disper­
sion relation (4) for resonances in the Eij, we 
must again distinguish between two different cases. 

1. The case of strong perturbations. a) Putting 
w -w = ~. we assume that L w0 « w, wli and 
we retain in the dispersion relation (4) terms with­
out w0 and terms containing w~/~ 2 • dropping all 
other terms, since they are small compared with 
the terms retained. Then Eq. (4) becomes 

s(s-n2)-w~~-2 (l -~2)(s-n2 cos2 6) =0. (5) 

Solving Eq. (5) for ~ and taking into account that 
n{3 cos e = 1, we find* 

, ± ((1 - p2) (1 - e~2))'/, 8 ; = Wo (1 02 • ") cos . e -e:? cos u 
(6) 

It follows from (6) that the correction to the fre­
quency turns out to be of the order w0• If E{32 > 1 
and E{32 cos2 e < 1, the quantity ~ turns out to 
be imaginary, which indicates the occurrence of 
waves that are damped or are building up in time. 
There is instability outside the cone determined 
by the Cerenkov condition E{32 cos2 e = 1. This 
case and the two next cases discussed below could 
perhaps be called cases of strong perturbations, 
as the difference E - n2 is generally speaking not 
small and does not tend to zero as w0 - 0. That 
E - n2 does not tend to zero as w0 - 0 is, of 
course, a consequence of neglecting in all expres-

*The equation nf3 cos e = 1 follows immediately from the 
condition ~/ w « 1 since w - w = w(1 - nf3 cos 0) = ~· 

sions given above the corrections necessitated by 
taking into account thermal motion in the plasma 
beam. It is physically evident that when thermal 
motion is taken into account the refractive index 
n must tend to ,fE when the concentration in the 
plasma beam is reduced. We shall formulate the 
condition for the validity of the results given here, 
which are obtained by neglecting thermal motion, 
at the end of the paper. 

b) In the limiting case of no magnetic field 
( wg = 0) we put, as before, w- w = ~ and as­
sume that ~. w0 « w. Retaining in the dispersion 
relation (4), as before, terms without w0 and terms 
with w~ I ~ 2 , and dropping all other terms which 
are small compared with the ones retained, we get 

s (s- n2)- w~~2 [(I - p2) (s- n2 cos2 8) 

- n 2 sin26 (1- sp2)] = 0. (7) 

Solving Eq. (7) for ~ under the condition n{Jcos e 
= 1 we find 

r; = ± w0 [(I - sp2) ( 1 - p2 cos2 6) j s ( 1 - sp2 cos2 6)]'1'. (8) 

The correction to the frequency is found to be of 
the order w0, as in the preceding case, and insta­
bility occurs when E{32 > 1 and E{32 cos2 e < 1, i.e., 
outside the Cerenkov cone. We note also that the 
solution (8), as is the case for the solution (6), is 
not valid in the neighborhood of the Cerenkov cone 
( E{32 cos2 e -1 ), for then ~ - oo. 

c) We assume now that the resonance occurs 
"' * "' at frequencies near w ± wH and we put w- w 

± wif. = ~. Proceeding as in the preceding cases, 
we get from the dispersion relation (4) 

z (?- n2)- w~ (zr2 + x) 1 (w - io + w~) r; = 0 (9) 

and hence 
2 2 ~ • ( 

~ = wg ( sr + x) I E ( E - n ) ( w - w + w H). 1 0) 

The correction to the frequency turns out to be 
real and proportional to w~. There is therefore 
no instability in this case. The solution found 
here is invalid when E -n2 f'::l 0, i.e., when E{32 

x cos2 e f'::l n2{32 cos2 e •'=" w2/(w 'f wH:) 2• The solu­
tion when E - n2 - 0 is studied below. 

2. The case of weak perturbations combines 
the solutions of the dispersion relation (4) under 
the condition E -n2 - 0 as w0 - 0. 

a) We put w- w = ~ and assume as before 
that ~, w 0 « w, wli. Under the condition E{32 

x cos2 e = 1, which is the same as the condition 
for Cerenkov radiation of a single charged par­
ticle, 

" -n2w2;32 cos2 () 

n- = w2p2 cos2 () 

e;2 
7- c (w+02 
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or 

The dispersion relation (4) is then appreciably 
simplified 

Solving Eq. (11) for ~ and assuming that n2 ~ € 

we find 

(12) 

It follows from (12) that the correction to the fre­
quency ~ "' wr3 turns out to be larger than in the 
preceding cases. ~ tends to 0 more slowly than 
w0, as w0 - 0. When we evaluate the root in (12), 
two values turn out to be complex, one of which 
corresponds to a wave that builds up in time. 

b) Putting the external magnetic field equal to 
zero ( wH_ = 0 ) we assume as before w - w = ~ 
and €{32 cos2 a= 1, so that n2 = EW21(w + ~ )2• 

Upon suitable obvious simplification, the disper­
sion relation (4) becomes 

282Eiw- w~C2 [(I - ~2) (8- n2 cos2 6) 

- n2 (I - 8~2) sin2 6] = 0. (13) 

Using the equation n2 ~ € and eliminating {32, we 
can write the solution of Eq. (13) in the form 

e = (w~ (8 _:_I) tan2 6 I 282)'1•, (14) 

which shows the existence of increasing waves. 
Equation (14) has been obtained earlier.2 It was 
shown then that it determines the build -up of an 
electromagnetic wave, which has a component of 
the electrical field parallel to the velocity of the 
plasma beam, i.e., a wave such as occurs in the 
Cerenkov effect for a single charged particle. 

c) As in the case of strong perturbations, we 
now assume that ~ = w- w- wtJ and ~ « w, wi{. 
In order that E - n2 tend to zero as w0 - 0 it is 
necessary, as already noted, to put €{32 cos2 () 

= w21( w + wif )2• The result is 

n2 = 8 (w + w~)2 1 <;;:; + w~ + W\ (8 -n)2 = 28e f(w+w~). 

and the dispersion relation is, after the usual sim­
plifications, of the form* 

2 2"/ (- • ) 2 ') -- * 0 8;; w + (J)H - (olo (8"( +f.) I e (w- uJ + UlH) = . 

Solving Eq. (15) for ~ we find 

(15) 

* .-..- * .-- * 2 . 2 ' * 1 e = + u~0 [<•Jf{j2s (ul + l•lH)- ((oJ + WH) (I - 8~) Sln 0;4s(oJH)/' 

(16) 

*If the plasma beam moves along a constant magnetic field 
in vacuo (E = 1), Eq. (15) for the case of the propagation of a 
wave along the direction of motion of the plasma beam (0 = 0) 
goes over into the dispersion relation studied in a paper by 
Twiss.• 

Equation (16) is obtained under the condition €{32 

x cos2 () = w2 I ( w + wi{ )2 < 1. When the velocity 
of the plasma beam exceeds that of light, €{32 > 1, 
the expression under the square root sign is posi­
tive, and the correction to the frequency is a real 
quantity indicating that there is no build-up in the 
case under consideration. 

d) If ~ = w - w + wi{ and €{32 cos2 () = w2 I 
( w - wi{ )2, the sign of wtJ changes in the dis per­
sion relation. The solution of Eq. (15) then be-
comes 
e = +wo [- w~j2s (<;- w~) 

+ ~- w~)(l - 8~2) sin2 6j4sw~]'h. (17) 

When fE {3 cos e > 1, wi{ < w, we have €{32 > 1, 
and the correction to the frequency turns out to be 
imaginary showing the existence of increasing 
waves. It follows from (16) and (17) that the crite­
rion for instability is in this case the inequality 
-!€ {3 cos e > 1. This criterion was formulated 
by Zheleznyakov. 1 

If the inequality fE {3 cos () > 1 is satisfied, 
the component of the beam velocity along the di­
rection of propagation of the wave turns out to be 
larger than the phase velocity of the wave. An in­
terpretation of the phenomena that occur then and 
are connected with the build-up of the electromag­
netic wave is contained in the cited paper by Zhele­
znyakov. We note that the instability determined 
by Eq. (17) occurs also for (). = 0, i.e., for a wave 
propagated in the direction of motion of the plasma 
beam. 

It was noted in the foregoing that we did not 
take into account the thermal motion in the plasma 
beam when deriving the dispersion relation. One 
can obtain a criterion for the validity of the solu­
tions found here. Zheleznyakov1 found in the non­
relativistic approximation a dispersion relation 
for the case of interpenetrating plasma beams, 
taking thermal motion into account. The form of 
this dispersion relation is such that the thermal 
correction remains inessential, as long as an 
inequality of the kind 

(18) 

where VT is the velocity of the thermal motion of 
the electrons in the plasma, is satisfied. The 
meaning of inequality (18) becomes clear if one 
takes into account that the required correction to 
the frequency ~ = w - w ± wH and that when there 
is thermal motion the parameter w = kv cos () is 
spread over a range .6.w ~ kvT. It is clear that 
the thermal motion can be neglected if ~ = w - w 
± WH » .6.W ~ kvT, i.e., just when inequality (18) 
is satisfied. 
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In the case of weak perturbations considered 
above, when E -n2 ~ E Uw, the inequality D..w/~ 
« 1 can easily be shown to lead to the inequality 
I c/..fE - c/n I » VT· (This was pointed out by 
V. V. Zheleznyakov.) This means that the differ­
ence between the velocity of propagation of an 
electromagnetic wave in a dielectric without a 
plasma and the velocity of a wave when a plasma 
beam is present must be much larger than the 
velocity of the thermal motion in the plasma. 

The authors are grateful to V. V. Zheleznyakov 
for discussing the results obtained here. 
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