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The electromagnetic interaction of electrons in a synchrotron is considered with the shielding 
effect of the chamber walls taken into account for bunches of arbitrary shape. The effect of 
these forces on the phase motion of the electrons and on the dimensions of a bunch are evalu
ated. 

IN earlier papers1•2 we have considered the coher
ent radiation forces in a synchrotron and have 
evaluated the effect of these forces on the phase 
motion of the electrons. However, in this earlier 
work the shielding effect of the walls of the syn
chrotron vacuum chamber was neglected; furthur
more, it was assumed that the bunch moves in an 
infinite free space. In the present paper we con
sider the same problems but take the shielding 
effect into account. The shielding effect of the 
walls is introduced as an approximation: it is as
sumed that the bunch moves close to an infinite 
ideally conducting plane or between two such 
planes. Under these conditions it is convenient 
to use the method of images. 

In particular, the force which acts on a single 
electron rotating at a distance b above a shield
ing plane is equal to the force exerted by a "posi
tron" which rotates in synchronism with the elec
tron at a distance b below the plane. With the 
method which we have developed earlier1 it is an 
easy matter to find the interaction forces in a di
pole of this kind. We assume that p = b/a « 1, 
where a is the radius of the orbit and expand 
these forces in powers of p2• Then, for the tan
gential force we have 

f ~2e2 4([ 224 ) 
"~3Q2'l" - PI · · · (1) 

e2 ( y3 1 y3 1 ) f" = (i2 -4- 12 p3 - 10 p ... (2) 

for the vertical force 

(3) 

(4) 

T = ( 1 - ~ 2)-'h, ~ = vI c. 

The force given by (1) is balanced by radiation 
dissipation so that when p « 1/y, i.e., when 
b « a/y, there is essentially no radiation from 

the dipole. At first glance this result may appear 
strange. It would appear that the dipole does not 
radiate when the distance between the charges, 2b, 
is small compared with the wavelength at which 
maximum radiation occurs: 1tmax = 2a/3y3. Ac
tually, because of the directivity of the radiation 
this effect comes into play earlier. As is well 
known, the radiation at the n-th harmonic is con
centrated in a cone with opening angle a"' n-113• 

Hence the difference in the path length of waves 
which emanate from the electron and the positron 
is ~ "' ba "' bn -1/3• For a given value of b, all 
harmonics with wavelengths A. » A.b = bv'b/a 
= ap3/ 2 cancel because the charges are of oppo
site sign. Since 1tmax = 2a/3y3, all harmonics 
cancel when b « a/y2, i.e., when p « y-2• 

We now consider the interaction forces in a 
bunch. The coherent radiation force which acts 
on an individual electron in an unshielded bunch 
is given approximately by the following expres
sion1 

00 

f ( ,I,)~ 2 Ne2 d (' <p(<j;-x) 
Hoh 'i' ~- ;3'G Q2 d<j; ~ x'f, dx, 

0 

(5) 

(6) 

Here J 0 is the effective angular dimension of the 
bunch; a0 is the effective cross sectional radius 
of the bunch; N is the number of electrons in a 
bunch; l/J is the phase (azimuth) of the electron 
being considered; cp ( l/J) is the phase distribution 
of the electrons in the bunch. In the derivation of 
Eq. (5) we consider only the interaction of the elec
tron in question with the part of the bunch which is 
behind it. The interaction with charges in front of 
the electron can be neglected. This procedure is 
valid because the interaction forces are not sym
metrical forward and backward since the radiation 
is highly directive. The maximum value of the 
force (5) is of order Ne2/aJ~I3 . 
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Using the same method as that employed in the 
derivation of Eq. (5), we find that the coherent ra
diation force acting on an individual electron in a 
bunch which rotates over a single shielding plane 
is given approximately by 

f ~ 2 Ne 2 2 d2 r? (y- x) 
-rcoh(~. P) ~ 'l-2 P dw2 .l ,1 dx. 3 3 a , 0 x 3 

(7) 

In the derivation of Eq. (7) it is assumed that 

o01 a <; p. 

(8) 

It is further assumed that the phase distribution of 
electrons in the bunch <p ( 1/J) is a smooth function. 
The smoothness criterion is given below. As in 
the derivation of Eqs. (5) and (7), account is taken 
only of the interaction between the electron being 
considered and the charges behind it. Hence, Eqs. 
(7) and (5) cannot be used behind the bunch. 

The condition 1 » p » 1/y2 can be written in 
the form a » A.b » 7tmax which implies that the 
short wave radiation of each individual electron 
must be unshielded. The condition Jr3 » p2 

means that the dimension of the bunch aJ0 must 
be large compared with Ab = ap312. The coherent 
radiation of a small unshielded bunch is concen
trated in the region of wavelengths which are of 
the order of the dimensions of the bunch; hence, 
the condition aJ0 » Ab means that the shielding 
is strong, i.e., that a large part of the coherent 
radiation is shielded. The ratio p2/J%f3 charac
terizes the fraction of unshielded coherent radia-
tion. 

In Fig. 1 we show the dependence of the force 
(7) on azimuth ljJ for a bunch of Gaussian shape. 
It is assumed that the bunch moves to the right. 
The maximum value of this force is of order 
Ne2p2/a2Jr3. 

FIG. 1. The coherent force f.r (in units of Ne2p2/a2!Y~/3, 
acting on a single electron of a Gaussian shielded bunch as a 
function of azimuth lj; (in units of !10 ). The dashed curve 
shows the phase distribution of particles in the bunch. 

The power expended by the forces (5) and (7) 
in acting on the bunch is equal to the power of the 
coherent radiation (with opposite sign) of the un
shielded bunches respectively. Integrating (5) and 
(7) over a bunch we find that these powers are of 
order N2e2c/a2J%f3 and N2e2cp2/a2Jr3 respec
tively. In the particular case in which the bunch 

is Gaussian, using Eq. (7) we obtainanexpression 
for the power which coincides exactly with that 
obtained by Schifr;3 Schiff's result is obtained by 
a phase analysis and summation of the intensities 
of the harmonics in the spectrum. 

The Coulomb part of the total tangential force 
which acts on a single electron in a bunch differs 
from the corresponding expression for Coulomb 
force in an unshielded bunch1 only in the logarith
mic term which contains the shielding parameter 
p = b/a; this component is approximately 

f 2 Ne2 ( b' •Cow(cp, P)=- 12 (121n 2e.,.-)rp'(cp), (9) 

where a is the cross sectional radius of the bunch. 
Hence, shielding is less important for the Coulomb 
force than for the coherent radiation force. 

Although shielding acts mainly to reduce the co
herent force, the Coulomb force can be smaller than 
the coherent force when y » 1. From a com pari
son of the orders of magnitude of the quantities in 
(7) and (9) it follows that the Coulomb force can be 
neglected (as compared with the coherent force) 
if 

(pj)2 > {)~,In (b/cr). (10) 

Equation ('Z) applies only when a bunch is smooth; 
it cannot be used if a bunch has highly irregular sec
tions or sharp ends. Hence we consider the case 
of a rectangular bunch separately: 

We will not derive general expressions for the 
forces and radiation power because these expres
sions are not particularly illuminating, but shall 
only give certain results. The coherent forces 
for a rectangular bunch over a single shielding 
plane for the case p = 0.1 and J 0 = rr/8 are 
shown in Fig. 2. It is assumed that the bunch 
moves to the right. It is apparent that the regions 
close to the ends of the bunch are the most impor
tant. 

The force which acts on an inner portion of 
order b../b/a = ap312 close to the front of the 
bunch is given approximately by 

Ne2 1 3 
fT::::::- a2 4{}o 2 (113p)'f,. (11) 

At a distance a7J from the end, inside the bunch, 
the force is 

Ne2 1 2 
f ,:::::: - (12 4{}0 16·~'·;, 

I 1/ 

(0 < "lj < p'h). (12) 

The same situation obtains for a bunch between 
two shielding plates; the power expended by these 
forces in acting on the end portions of a bunch of 
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width of order A.b is 

fr 
3 

. N2e21:' lf3 p 
W coh:=::::: -(;2 (Mto)2 • (13) 

This result is in agreement with that obtained by 
Schwinger (cited by Nodvick and Saxon) ;4 Schwing
er's expression is obtained by summation of the 
wave-zone radiation over the entire spectrum. 
The Schwinger method, however, cannot be used 
to compute the effect of individual portions of the 
bunch in the general expression for the radiation 
power. Nodvick and Saxon4 assume that the 
Schwinger expression (13) can be applied to a 
bunch of arbitrary shape. Actually, however, this 
procedure is not valid because the radiation (13) 
comes from the ends of the bunch; the radiation 
is in fact due to the existence of sharp ends in 
the bunch. 

A bunch may be assumed smooth if there is no 
niarked variation in charge density in a distance 
large compared with A.b = bv'b/a. Under these 
conditions Eq. (7) can be used. If this condition 
is not satisfied the expressions for the forces in 
a rectangular bunch can be used as an approxima
tion. 

In practice, because of the coherent forces it is 
probable that there are considerable charge-density 
gradients near the front of a bunch. However, be
cause of the same forces high density gradients 
cannot exist for long at the rear of the bunch; any 
sharp density variation is spread out so that the 
bunch always has a smeared-out tail. In what fol
lows it will be assumed that the bunch is smooth 
and that Eq. (7) can be used. 

We now estimate the effect of the coherent 
forces (5) and (7) on the phase motion of electrons 
in a "cumulative" system. This effect is intensi
fied to the extent that the angular dimension of a 
bunch is reduced because of the usual incoherent 
radiation damping of the phase oscillations. Hence 
the coherent forces limit the dimension to which a 
bunch can be compressed without an external 
agency. The minimum angular dimension of a 

FIG. 2. The coherent force f.,. (in 
units of Ne2 /a2) acting on an individual 
electron in a rectangular bunch as a 
function of azimuth t/1 for the particular 
case tJ 0 = rr/8, p = 0.1. The dashed line 
shows the phase distribution of particles 
in the bunch. 

bunch due to a force such as (5) when there is no 
shielding is of the following order of magnitude:2 

%0 ~ (2rrN e I aV)'", (14) 

where V is the peak value of the radio-frequency 
voltage. Equation (14) is easily obtained from the 
condition that close to the rear of the bunch the 
phasing electric force is comparable with the co
herent force which tends to disturb phase stability. 

Similarly, when shielding is taken into account, 
i.e., when the forces in (7) are considered, this 
dimension is of the order of 

%0 ~ (':.1tNep 2 I aV)'1". (15) 

The estimates in (14) and (15) apply for the same 
conditions as Eqs. (5) and (7) respectively. 

Substituting in Eq. (14) a = 50 em, V = 10 kev, 
and assuming N = 1013, we find J-0 "" 3.5. This 
result means that because of the coherent radia
tion force a bunch will not be small in the absence 
of a shielding wall; however, in this case (14) does 
not apply. Substituting the same parameters in 
(15) and assuming that p = 0.05, we find J-0 "" 0.4. 

The vertical force due to the shielding planes 
is directed toward the planes and leads to an in-· 
stability. In the case of a closed current ring this 
force is given approximately by 

f ~ Ne2 .!.... {_!__ __2:.._ + R2Jn _!__} (16) 
z ~ az a 1' 8p" t-' p ' 

where z is the displacement of the bunch from 
the median plane. It is assumed that I z I «b. 
Using reasonable values we find that the force in (16) 1s 
considerably smaller than the magnetic focusing 
force and need not be considered in practice. 
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