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The absorption coefficient of ultrasound in a semiconductor is estimated with account of 
quantization of the electron energy in a magnetic field. 

JN a number of papers published in recent years, t-a 
the results of experimental and theoretical inves
tigations of the absorption of ultrasonic energy by 
current carriers in a magnetic field has been re
ported for the case of ultrasonic frequencies w 
that are less than or equal to the collision fre
quency of the electrons 1/ T ( T is the relaxation 
time). 

The case of higher ultrasonic frequencies, for 
which the inequality 

(1) 

where wQ = cyclotron frequency of the electron, 
is satisfied, has been investigated theoretically by 
the author.4 This inequality is the inverse of that 
used in the papers mentioned above. However, 
the calculation4 was made in the classical approx
imation A.s > A.el for the special case Kz = 0 ( Kz 

is the component of the wave vector of the ultra
sonic wave in the direction of the magnetic field ) . 

1. Inasmuch as the absorption of ultrasonic en
ergy has a resonance character, 4 we shall make 
use of a variant of the Wigner-Weisskopf theory 
of quantum processes. The Schrodinger equation 
for electrons interacting in a magnetic field with 
phonons and lattice impurities has the form 

i!ia'J!';at = (Ho +Hint) 'J!', (2) 

where 

H0 = (2m"r1 [(Px + e~ Yr +P~ +P~] + Hphon (3) 

is the sum of Hamiltonian operators for the motion 
of an electron in a magnetic field, and of the acous
tic phonons of the lattice, Hphon; 

Hint = H1 int + H2 int + Ha int (4) 

is the energy of interaction of the electron with the 
ultrasound ( Htint), the acoustic vibrations of the 
lattice ( H2 int ), and the impurities ( H3 int). 
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At low temperatures, for which the resonance 
effects under consideration can be measured, the 
optical vibrations do not have an appreciable value. 
The interaction operators H1 int and H2 int are 
chosen in the forms 

H1 int =a div u = V,e""r + v:e-i><r, V = :!._ iau0xe-i"'t· 
" 2 , 

(5) 

H2 int =a~ div u {K' ,j). {6) 
><'/ 

In Eqs. (5) and (6), the quantity a is the constant 
of interaction of the electron with the lattice vibra
tions, u0 is the vector of the amplitude of the ul
trasonic wave, K and w are the wave vector and 
the frequency of the ultrasound, respectively, while 
K' and j are the wave vector and the polarization 
of the acoustic vibrations. We have no need here 
for the explicit form of the operator H3 int· 

We express the solution of (2) as a superposi
tion of wave functions that are solutions of the 
equation 

ina'¥ ;at = H o 'J!'. (7) 

'J!' = ~b-.exp(-iE-.lj!i)~n. kx,kz <I>N,.IT <I>N><'' (8) 
'-

where 

~n. kx· kz = Cn exp {i (kx X + kz z) 

- t a. (y- Yo)2 } H n CVi7:(y- Yo)) (9) 

is the normalized wave function of the free electron 
in a magnetic field, a = I e I Je/ eli and the remain
ing notation is the same as that in the book by Lan
dau and Lifshitz;5 <l>NK is the oscillator wave func
tion describing the ultrasonic vibration of the lattice; 
II<l>NK' is the product of the oscillator wave func
tions of the acoustical vibrations of the lattice 

Et. = B 11 (kz) + liw0 (n + ! ) 
+ 1iw (Nx + ~) + ~1iw,• (N,.• + -i;-). (10) 

In (10), Ell is the kinetic energy of motion of the 
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electron along the direction of the magnetic field; 
tiw0 ( n + ~ ) is the energy of motion in the plane 
x, y; tiw ( NK + ~) is the ultrasonic energy; 
~ tiwK' ( NK' + ~) is the energy of the acoustic 
K' 

vibration; A. is an index denoting the total set of 
quantum numbers of the system. In the sum (8), 
one of the amplitudes bA.o is equal to unity at the 
initial instant of time while the other is equal to 
zero. The indices A. and A. 0 differ in the quan
tum numbers of the electron states, and also by 
the occupation numbers of the phonon levels; in 
the state A. these occupation numbers differ from 
their initial values by unity or by zero. 

Applying the Wigner-Weisskopf method, 6 we 
find the equation for bA_, the transition-probability 
amplitude, and for 'Yn (kz ), the reciprocal of the 
mean lifetime of the electron in the state n, kz: 

b).= - Htnt ('/.., '/..0) [exp {i (E"J..- E"A,) 

xt/li- rt/2} li 1 (E"J..- E"J..,) + ir/2], 

rn=- ~~ ~\Htnt\2 (1-exp{i(E"J..,-E"J..)tfn+rt/2}] 
"/.. 

(11) 

(12) 

To find the transition probabilities under the 
action of ultrasound, it is necessary to compute 
Htint (A., A.0 ). The phonon part of the wave function 
(8) contributes the following factor to the square 
of the modulus of the matrix element: 

In (13) the number of ultrasonic phonons NK, 

which is assumed to be much larger than unity, is 
approximately expressed by the ultrasonic ampli
tude. 

We now compute the electron part of the matrix 
element. In accord with the work of Zil'berman, 7 

~ exp {- --i (/. (y- y~) 2 } H n' (Voc (y- y~) 

X exp {ixyy- + r~. (y- y0 ) 2 } Hn (Voc (y- y0 )) dy 

= exp {i><uYo + i~ (xy, Yo- y~)} ~ exp { - r~.y' 2 

+ ixpy'} H n' (Voc y') H n (Voc y') dy'. (14) 

The form of the phase {3 ( Ky, Yo- Yo) is given in 
reference 7. We use here the notation K~ 
= (kx-kx)2 + 4, y' = y-y0• The integral in (14) 
is given by 

V rr.jr~. 2n1 (ixpJVoc)n,-n•n1 ! L~:-n• (x~j2r~.) exp {- x~j2r~.}; (15) 

n2 and n1 are the largest and smallest of the 
numbers n and n', respectively, and L~ is 
the Laguerre polynomial. 

As a result of these calculations we get for the 
probability of transition of an electron (under the 
action of ultrasound) from the state n, kz, kx 
into the state n'' kz, kx, 

\ b"J.. \2 = (2rr.) 2 fs- \axu0) 2'f..~·-n•e-"J..p (L~:-n• ('f..p)j2 

x[(nl + 1) ... n2r1 \ [exp {i (E"J..- £) . .) tjn- rt/2} 

- 1]/[(E"J..- E"J...)/1i +ir/2]\ 2 o (- k~ + kz ± ><2 ), (16) 

where A.p = K~ /2a is a dimensionless parameter 
that determines the ratio of the radius of the orbit 
of the electron in the state n = 0 to the projection 
of the ultrasonic wave in the direction perpendicu
lar to the magnetic field. In obtaining (16), I H1 int 12 

was integrated over kx; as a result, K~ became 
equal to Kk + K~. The plus sign in the 6 function 
in front of K z corresponds to a transition with ab
sorption of sound energy, while the minus sign cor
responds to a transition with radiation. 

2. The ultrasonic absorption coefficient r is 
obtained from the formula 

(17) 

where c0 is the sound velocity, Es0 = pu~w2/2 is 
the sound energy density, and U is the energy ab
sorbed per second per unit volume by the current 
carriers of the semiconductor. Calculation of r 
thus reduces to calculation of U. Below we shall 
introduce formulas for U under different assump
tions relative to the state of the electron gas. 

It is easy to obtain, using the Pauli principle, a 
formula for the mean number of transitions from 
the level n, kz to the level n', kZ, 

"( n (kz) f n (kz) ( 1 - f n' (k~)} i b"J.. ( 00) \2; (18) 

fn (kz) is the distribution function of the electrons. 
If we substitute I bA.I 2 from (16) in (18), taking the 
case of absorption of a phonon, and then integrate 
over kz, kz, sum over n, n', and multiply the 
resultant expression by 2g = I e IJC/7rtic (the den
sity of states with the given quantum numbers n 
and kz ) , then we obtain the number of electron 
transitions with absorption of ultrasonic phonons 
per unit time. In similar fashion, we find the num
ber of transitions with radiation of ultrasonic pho
nons. Multiplying these numbers of transitions by 
tiw and - tiw, respectively, and adding, we obtain, 
finally, the unknown value of U: 

V=2g1iw {~ ~rnfn(kz) 
n,n' 

X(1-fn•(kz+><z)J\b"J..(kz+Xz, 00) \ 2 dkz 

- 2J ~lnfn(kz)[1-fn·(kz-Xz)J!b"J..(kz-Xz, oo)j 2 dkz}· 
n',n 

(19) 
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The results of calculation of Yn by (12) will be 
published separately; in the present paper we shall 
assume y to be constant. We introduce in (19) the 
new summation indices .t..n = n2- n1 and n = n1, 

and substitute the expression for I bA. 12; we get, 
finally, 

co 
U = ( axuo )2]:! "' )..!>ne-"P g 4 T</i 2.J p 

!>n, n=O 

X[(n+ 1) ... (n +~n)P [L~n ()'p)j2 

{ (' If n (k2 ) - f n+!>n (k2 + 1<2 )] dk2 

X J (dnw0 - OJ+ [e !I (k 2 + 1<2)- e 11 (k2 ))/1i)2 + 12/4 

..L i If n+!>n (kz)- f n (kz + Xz)] dkz } 
1 ~ (dnOJ0 +OJ+ [s 11 (k2)- e 11 (k2 + xz}]/tz)~ + 1'/4 ' (20) 

We shall now consider certain special cases of 
Eq. (20). 

Nondegenerate Semiconductor 

a) K z = 0. As a consequence of the large value 
of the denominator of the second integral in (20), 
this term can be neglected. Substituting in (20) 

f~exp{-[Eg +7iw0 (n+-}-)-:L]JI=l}, (21) 

We can sum in it over n. Eliminating eJ.l.l® from 
(20) by means of the formula for the electron con
centration 

N = ; e~'-19 [! - e-li.,,/9 r 1 ~ e-" II 19 dkz (22) 

we get an expression for U containing only a sum
mation over .t..n: 

00 

U = 2N (axu0)2 ~ 2J sh (dnliOJo/~6) 
4 It !1n=O(dnOJ0 -w)2+12/4 

x exp{-"Ap(l +e-li"'o/9)(1-e-n"'•/9rl} 

xI t.n (21-pe-n"'•/29 [ 1 _ e-/ic.>,/9rl). (23) 

Here I.t,.n is the Bessel function of imaginary ar
gument. 

In the derivation of Eq. (23), nondegeneracy was 
assumed; therefore we can assume that tiw0 /® < 1 
and 

exp { -1iw0 j8}- 1 ~1iw0jA. (24) 

To go to the classical limit, we must assume 
A.p « 1. Substituting (24) in (22), and setting 
( w/ w0 )2 ®/m"C~ = x, we find an approximate ex
pression for U: 

00 

U= ~ (aY'tYrw h ~nw0e-xhn(x)j[(tww0 -w)2 +"(2j4J, 
~~ ~~ 

which is very close to Eq. (10) of reference 4, ob
tained by classical means. The fundamental differ
ence between (10) of reference 4 and (25) is that 

instead of 1/ T2 in the denominator of the classical 
formula, we here have y 2/4. A formula that agrees 
exactly with the classical can be obtained if we use, 
in place of the probability (16), the square of the 
modulus of the matrix element of the Dirac theory 
of quantum transitions, averaged over time by 
means of the factor e -t/ 7 . The numerical calcu
lations and the consequences of (25) were dis
cussed in reference 4. A graph is given there, too, 
from which the resonance character of the ultra
sonic absorption is clearly evident. 

b) Kz ;r. 0. We substitute f from (21) in (20) 
and sum over n: 

u = g ( a:uo r =~ LJ ( 1 - e-/iO>o/9 rl 
!>n 

{ 1 + e-li<o,/9 1i~J0 dn} 
X exp - Ap 1i 19 + -.-"'-1-e Cllo ~u 

X I !>n (2/.pe-li"',/9 /[ 1 - e-li"',;e]) eP./9 

X { \ exp (-a 11 /8)- exp {- dnliw0f6- e 11 (k2 + x2 )/8} dk 

~ [dnOJ0 -w+(e 11 (k2 +x2)-e 11 (k2))/1i]•+l•/4 2 

(' exp (- ~ 11 /8)- exp {dnliw0/6- e 11 (k2 + x2 )/8} } 

+ j [dnwo + "' + (e II (kz)- e II (kz + ><z))fn)' + 1'/4 dkz • (26) 

It is of interest to note that in both cases a) 
and b) of the nondegenerate state of the current 
carrier, the energy U is proportional to the num
ber of particles N. 

Metal 

We shall make an approximate estimate of U 
for Kz = 0. We neglect the second integral in (20) 
and take the mean value of the positive expression 

[L~n]2A.~ne-A.P[(n+ 1) ... (n+.t..n)r1 outside 
the summation over n. We obtain 

(27) 

J.l. is the chemical potential of the electron gas. 
Equation (27) shows that only a comparatively 
small part .t..ntiw0 I J.l. of all of the electrons plays 
a role in the process of absorption of ultrasonic 
energy in metals. 

Semiconductor in which the Current Carriers are 
in a Degenerate State 

For those comparatively high magnetic field 
intensities that guarantee satisfaction of the in
equality w0 > 1/ T, the states of the electron with 
energy EJJ + tiw0 (n + -!) are strongly degenerate. 
The multiplicity of the degeneracy 2g at JC"' 103 

oe is very large (of the order 1010 ). Such strong 
degeneracy causes only a small number of the low
lying quantum levels to be filled. For example, 
for N"' 1017 em -a and w0 "' 1010, the number of 
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the highest filled discrete level is of the order of 
10. Therefore, the coefficient of absorption can 
be computed by direct summation of several non
vanishing terms in (20). As before, we shall con
sider two cases. 

a) Kz = 0. We introduce a new integration 
variable 

(nj2rc) dkz = [(2m"js 11 )''•/2rcn] ds 11 • (28) 

The numerical value of r can be found from the 
tables for F -1/2 (see, for example, reference 8 ). 

b) Kz F 0. In this case, too, there will be com
paratively few non -vanishing terms in the sum over 
n. If nw0 » ®, the gas can be considered strongly 
degenerate. Calculation of the integrals in (20) 
leads to the following formula for the ultrasonic 
absorption: 

We substitute (28) in (20) and, using the notation 

F -•1, (t~ - nw0 ( n + +)) 

~ de 11 

(29) 

c 0 = 5 x 105 em/sec. The chemical potential J.l 
we set equal to 3.75fiw, which corresponds to 
an electron concentration N :::::: 5 x 1016 em -a. 
Summation in (30) was carried out over n from 
0 to 3 for two values ~n = 1, 2. For ~n > 2, 
the term (A.~ )~n becomes a very small quantity 
in our example. 

The dashed lines in the drawing indicate graphs 
of the individual terms of the sum in (30) with ~ * 2 · 2<l.n " 2 -A [ ]2 r = gm a "" (' op)<l.n ~n . ~\,I e P L<l.n 

iBrcpc2fi• ..::.J " cos & 4.J (n + 1) ... (n + Lln) n = 1 and n = 0, 1, 2. Each of these has a maximum 
0 <l.n n for intermediate values of J., which describes the 

x(~-1iwo(n++)ro~llJ +2(lin- ;J)J 
-tan - 1[ w; ("~-~ [ cos2-\l- 2kz 

x(~-1iw0 (n+ +)r~&J +2 (lin-;:))] 

-tan-t[~o ("~-~[cos2 -\l+2kz 

x(~ -1iw0 (n+lin+ .. ~ )t~~] +2 (lin--~))] 

+tan - 1[ ~o ("~-~ [ cos2-\l- 2kz 

x(r~ -1iw0 (n +lin ++))co:~] 

+2(lin- ;J)J +· . .}. (30) 

Here A.~ =nw2/2m*w0c~, kz [JJ.-nw0 (n+ !>] is 
the Fermi value of the wave number for an elec
tron in the n-th discrete level. The dots take the 
place of the sum of an additional four arctangents 
similar to those written down, with the parameter 
2(~+ w/w0 ) in place of 2(~n-w/w0 ). In (30), 
J. is the angle between the direction of propagation 
of the ultrasound and the intensity of the magnetic 
field. 

The calculation of r has been carried out ac
cording to Eq. (30) for J. in the interval from 
0 - 90°, and a graph has been constructed of the 
dimensionless quantity r •1611'pc~n2/gm*a2 . The 
following numerical values of parameters were 
chosen for the calculation: w/w0 = 2; A.~= 0.2, 

resonance of electrons found in the discrete level 
with n = 0, 1, 2. In this resonance process, part 
of the energy of the phonon (in the given example, 

Dependence of the 
sound absorption r (in 
units of gm*a"/l611pc~n2 ) 

on angle iJ. The con
tribution of the differ
ent terms of the sum 
(30) corresponding 
to different values of 
n and lin is shown by 
the dashed lines. z.o 

1.0 

90 70 50 50 fO JO 

! ) is used up to change the translational motion 
of the electron in the direction of the magnetic 
field. From the laws of conservation of energy 
and momentum, it is easy to obtain an equation 
for J. for which a particular type of resonance 
sets in. This resonance is determined by the 
zeros of the arctangents in (30): 

'/-~ (cos2i) ±2kzcos ftjx) + 2 (lin- w/w0) = 0. (31) 

The deeper the level n, the larger the resonance 
angle J.. This circumstance is excellently illus
trated by the given graphs. 
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The resonance effect under consideration can 
be of interest in the following connection. The ab
sorption of phonons with Kz r< 0 leads to a change 
of the momentum of the electrons by liKz. In 
unit time, U/tiw phonons are absorbed, and, con
sequently, the rate of change of the projection of 
the momentum of the electrons on the z axis is 
equal to Fz = KzU/w. It is easy to estimate the 
current flowing in the direction of the magnetic 
field, 

or the intensity of the electric field inside the 
bounded semiconductor: 

(32) 

(33) 

a is the electrical conductivity of the semiconductor .r 
3. Experiments on ultrasonic resonance of cur

rent carriers required low temperatures of the or
der of 1 o K and high ultrasonic frequencies ,... 1010, 

1011 cps. At the present time, ultrasonic technol
ogy has come close to this range of frequencies. 
Thus, for example, Baranski19 , and B'ommel and 
Dransfeld10 have obtained frequencies ,... 2.5 x 109 

cps, while Jacobson11 has reached 1010 cps. Re
cently results have been published of the measure
ment of ultrasonic absorption in silicon, germa
nium, etc, for frequencies close to 109, and at tem
peratures of about -150°C.12 If the results of ex
periments are roughly extrapolated to the region 
of much lower temperatures ,... 1 o K and much 
higher frequencies w ,... 1010 , 1011 , then one can 
assume that the lattice absorption should under 
these conditions be of the order of 102 em - 1, 

while the electronic part estimated by Eq. (25) is 
r el ,... 10 em - 1 (for values of the parameters N 
= 1012 cm-3, a= 15 x 10-12 ev, c0 ,... 105 em/sec, 
x,... 1, w,... 1011, y-1w0 ,... 1) although an order 
lower is sufficiently large for experimental ob-

servation. It is also necessary to remark that 
the measurement of the electric field produced by 
the effect of "amplification" of the electrons along 
the magnetic lines of force [which, by (31), (32), 
is proportional to the electronic part of the absorp
tion coefficient], can be shown to be a much eas
ier problem than the separation of the contribution 
of the electronic absorption from the general ab
sorption of the semiconductor. 

In conclusion, I want to express my gratitude 
to Yu. E. Perlin for useful discussions and to 
V. L. Gurevich for a discussion of the fundamen
tal aspects of the problem and valuable comments. 
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