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It is necessary to obtain the thermodynamic average of the function exp i (q • UR), where q 
is a constant vector and R the displacement of the R-th atom from its equilibrium position, 
when one studies the scattering of x rays or slow neutrons by atomic systems. In the case 
of small oscillations the thermodynamic average of any function F ((q • uR)) is uniquely de­
termined by the mean-square fluctuation D (n, R, T) of the displacement of the R-th atom 
in the direction of the vector n = q/ q ( T is the temperature of the system). A method is 
given for the evaluation of the quantity D (n, R, T) for an infinite perfect lattice with a fi­
nite number of localized defects. We have obtained an asymptotic expression for the function 
D (n, R, T) at large distances from the defects. This asymptotic value is determined by the 
lattice and the nature of the defects. This method of evaluation can also be applied to other 
problems. 

WHEN considering problems connected with 
small vibrations of crystal lattices it is usually 
necessary to take the time average of several 
functions of the displacement of a given atom of 
the lattice in thermal equilibrium from its equilib­
rium position. If, for instance, we study the scat­
tering of x rays (or slow neutrons ) by a crystal 
lattice, we must find the time average of the quan­
tity exp i (q • UR), where q = (p -p' )/h (p and 
p' are respectively the momenta of the incident 
and the scattered waves, h is Planck's constant 
divided by 27T), UR is the displacement of the 
R-th atom in the lattice from its equilibrium po­
sition, R is the radius vector of the equilibrium 
position of the atom. Another example would be 
the evaluation of the dispersion of the displace­
ment of the atom from its equilibrium position. 

If we use the distribution function for the dis­
placements from its equilibrium position for a 
one-dimensional oscillator (Bloch, 1 see also ref­
erence 2) which is in thermodynamic equilibrium 
with the surrounding medium, and also use the fact 
that the motion of any atom can be written as a 
linear combination of normal vibrations when the 
atoms in the system execute small vibrations, we 
can show that the thermodynamic average of any 
function F ( q • uR) which depends on the dot 
product of the constant vector q and the displace­
ment, UR, of the R-th atom in the system which 
executes small vibrations, can be expressed by 
the formula 

00 

(F (qu~)) = ·c'l• ~ F (xq V2 D (n, R, T)) e-x• dx, (1) 
-co 

where q = I q I, n = q/ q, T is the absolute temper­
ature, and D (n, R, T) is the mean-square fluctua­
tion of the displacement of the R-th atom in the 
direction of the vector n. It is thus sufficient to 
find the quantity D (n, R, T) = < (n•uR) 2>112 for 
the evaluation of < F ( q • UR) > or, in particular, 
of the quantity < exp i ( q • UR) > . 

It is v~ry difficult to evaluate the quantity 
D ( n, R, T ) for the case of an imperfect crystal 
lattice. Among the deformations of a crystalline 
lattice there is, however, one form of deformation 
which enables us to overcome the difficulties in the 
calculation of the quantity D (n, R, T ). We have in 
mind the so-called localized lattice defects which 
can be described by a method developed and effec­
tively used by I. M. Lifshitz3- 9 in several of his 
papers. This method makes it possible to consider 
such important lattice defects as the substitution 
of an atom in the lattice by a foreign atom, the oc­
currence of a vacancy or of the displacement of 
an atom in the lattice, and other localized irregu­
larities. 

In connection with the proposed use of averages 
of functions of the form F ( q • uR) (in particular, 
in the problem of the elastic scattering of slow neu­
trons by a mixture of light isotopes), we give in 
the present paper the evaluation of the mean -square 
fluctuation D ( n, R, T ) of the displacements of 
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atoms in a given direction n for an infinite crys­
tal lattice with a finite number of localized defects. 

The local character of the perturbations enables 
us to choose the normal coordinates of the infinite 
unperturbed lattice in such a special way that they 
can be divided into two sets, one of which is not 
changed by the presence of the perturbation. The 
method of calculation makes use of this fact and 
can also be used for other problems connected with 
vibrations of imperfect lattices. 

The small-oscillations equation of any system 
of atoms can be written in the form 

(2) 

where ma is the mass of the R-th atom in the lat­
tice, u:k the component of the displacement of the 
R-th atom from its equilibrium position along the 
a-th axis of a Cartesian system of coordinates, and 
A~, the coefficients of the interaction between the 
atoms in the system in the linear approximation. 
The general solution of the set of differential equa­
tions (2) is a superposition of normal vibrations 
hp'XA.p (R) 

UR = (mR)-'f, 2;~'-P '/.J..p (R), (3) 
J..p 

where the hp are normal coordinates, satisfying 
the equations 

d2~J..p i dt 2 + }.~)..p = 0 

(A.= w~ are the squares of the eigen frequencies 
of the system); the 'XA.p ( R) form a complete or­
thonormal set of eigenfunctions of the equation 

L is a Hermitian operator defined by its matrix 
elements 

(4) 

(5) 

The squares of the eigen frequencies of the system 
are the eigenvalues of the operator L. 

Using Eq. (3) and the fact that the distribution 
function of the displacements of a one-dimensional 
oscillator in thermodynamic equilibrium with its 
surrounding medium is a Gaussian distribution 
( Bloch1), we can write the expression for the 
square of the fluctuation D2 (n, R, T) of the dis­
placement of the R-th atom of the system in the 
form 

D 2 (n, R, T) = mR"12; f (t.., T) / "X'-P ( R) /2 , (6) 
)..p 

where 

f (!-, T) = (h/2 VX) coth (h VT..j2kT) (7) 

is the square of the mean square fluctuation of the 

Gaussian distribution, T the absolute temperature, 
and k Boltzmann's constant. We note that Eq. (6) 
for D2 can be written in the form 

D2 (n, R, T) = mR-l ~ {f (L, T)}R0~· no no', (8) 
oa' 

a a' where the { f ( L, T ) } RR' are the matrix elements 
of the operator f ( L, T ) . 

The spectrum of the operator L consists for an 
infinite perfect crystal lattice of several finite sec­
tions of the real axis, and every point of the spec­
trum of the operator L is infinitely degenerate. 
In that case we can rewrite Eq. (6) as follows 

Following Lifshitz, 3•4 we call a localized lattice 
deformation any defect that can be taken into ac­
count in the small-oscillations equations (2) by 
adding some finite-dimensional Hermitean operator 
A to the operator L of the unperturbed lattice. A 
whole series of actually existing defects ( substitu­
tion of an atom of the basic lattice by a foreign one, 
vacancies, interstitials, and so on) are defects of 
this kind. It has been shown4 that when the opera­
tor L is bounded and has a continuous spectrum 
and the operator A has a finite number of dim en­
sions, the spectrum of the perturbed operator L 
= L + A can differ from the spectrum of L only 
in a finite number of isolated points. Let A.1, A.2, 

. . . , A.n be all the points of the discrete spectrum 
of the operator L = L + A. If we denote all quanti­
ties referring to the perturbed operator L by a 
tilde, ("') we can, according to (9), write down 
for the quantity D2 of the perturbed problem the 
following expression 

S(n, R, T) = ~f(}-, T) {~I n4',_P (R)/ 2 - ~ jnth~> (R) 12 } dt.. 
p p 

(11) 

where the lPA.p and lPA.k are the eigenfunctions of 
the operator L corresponding respectively to the 
continuous and the discrete spectra, and rna is 
the mass of the R-th atom of the perturbed lattice. 

It is necessary, according to (10), to evaluate 
the quantity S (n, R, T) in order to find the quan­
tity D2• It appears that to do this it is necessary 
to know the complete set of the eigenfunctions of 
the operator L. Since the perturbing operator A 
has a finite number of dimensions, however, the 
problem of finding the quantity D2 (n, R, T) sim­
plifies considerably. 
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Let us denote by HA. the eigen-subspace of the 
operator L corresponding to the spectral point A.. 
We separate from this subspace the subspace H~ 
spanned by the functions 1/JA, satisfying the equation 
AI/JA. = 0. It is clear that any solution of the equa­
tion ( L -A.) 1/JA, = 0 corresponding to the subspace 
H~ is at the same time a solution of the perturbed 
equation (L-A.) 1/JA, = 0. We denote by H~ the sub­
space orthogonal to H~ which with H~ makes up 
the eigen-subspace HA.· We consider also sub­
spaces H' and H" which are the closures re­
spectively of the subspaces H~ and H~ with all 
possible A. (it is evident that any space H is the 
orthogonal sum of subspaces H~ and H~). 

Let L' and L" be the operators produced by 
the operator L in the subspaces H' and H", re­
spectively. Let L' and L" be similarly the op­
erators produced by the operator L, also in the 
subspaces H' and H". One shows easily that 
L" = L" and L' = L' + A. This last fact enables 
us to conclude that all physical consequences 
caused by the localized perturbation A must be 
describable in terms of the subspace H'. In our 
particular case this means that we can consider 
in Eq. (11) for S (n, R, T) the summation over 
p to extend only over the eigenfunctions of the op­
erators L' and L' + A defined in H'. One sees 
easily that the degree of degeneracy of the spec­
trum of the operators L' and L' + A is finite. 

It will be found convenient to choose as the 
basis in H' a complete set of eigenfunctions of 
the operator L'. We obtain such a basis by con­
structing a base in the eigen-subspaces H~ of 
the operator L'. To do this we consider the eigen­
functions gi (R) of the operator A, i.e., let Agi 
= Yigi, where the Yi are the non-zero eigenvalues 
of the operator A. The number of functions gi is 
equal to the rank r of the operator A. We shall 
assume that the functions gi are normalized to 
[ gigk ] = oik (here and henceforth the square 
brackets indicate the scalar product in the atomic­
displacements space: [ gigk ] = I) gy ( R) g[ ( R). 

a,R 
If we choose for the eigenfunctions of the opera-

tor L the usual representation 

'Xk .• (R) = ek, s exp [ikR] (12) 

[here ek,s is the polarization vector, k a recip­
rocal-lattice vector multiplied by 21r, and s the 
number of the vibration mode; the eigenvalues of 
the operator L in this representation are func­
tions of k and s: A. = A.s ( k)], we can write the 
vectors gi ( R) in the form 

g,(R) = ~i'A,;(R) dl.., (13) 

. - ~I [g;Xk, .I Xk. 8 (R) dQ 
cpA, ' - -; .\ I V' A. (k) I (14) 

The integrals in (14) [and also those in (17) below] 
are taken over the surfaces A.s ( k) = A.. 

One can show that the space spanned by all func­
tions 'PA.,i with a given value of A. completely ex­
hausts the subspace H~. From this it follows that 
the closure of the linear envelope of the functions 
'PA.,i with all possible A. and i contains within 
itself the subspace H'. The functions 

~AP = ~ Cp; (/..)cpA, i (15) 
i 

with the cpi (A.) satisfying the conditions 

~ Cpi(l..) Cp• j (/..) IX;J (/..) = Opp', (16) 
if 

where 

IX;j (/..) = 2J \ [g;Xk, s I [gj Xk .• I dQ (17) 
j I VAs (k) I 

form thus an orthonormal basis for the space H'. 
We shall look for solutions of the perturbed 

equation ( L' + A- A.) 'iiJA. = 0 in the form of an ex­
pansion in terms of the eigenfunctions of the oper­
ator L'; to do this we write 

(L'- /..)~A = -A ~A· (18) 

Since A'iiJA. belongs to the subspace of the functions 
gi, 

(L'- /..)~A= ~C; (I..) g; = ~Ci (/..) ~ cpiL; dp ... 
l l 

We have thus for the eigenfunctions of the operator 
L' +A 

(19) 

The symbol j indicates here the principal-value 
integral. A (A. ) is a regularizing function, which 
depends on A. and which must be determined to­
gether with the coefficients Ci (A. ) . It is clear that 
for the discrete spectrum of the operator L' + A, 
the integrals in (19) are taken in the usual sense 
and A (A.) = 0. 

To determine the functions Ci (A.) and A (A.), 
we apply to both sides of Eq. (19) the operator A 
and multiply the result by gj. This leads to a set 
of r homogeneous linear equations for the Ci (A.): 

"1:1 C rx,, (p.) ' 0 "7" ci(l..) [A (I..) IX;J (!..) + J p. _A dp, + O;J ;''jj] = · (20) 

If A. belongs to the spectrum of the operator L, 
the condition that the set (20) be solvable leads to 
an algebraic equation for A (A.) of degree not 
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greater than r (if A. does not belong to the spec­
trum of the operator L, this condition gives us an 
equation for the points of the discrete spectrum of 
the perturbed operator L' + A). Let Ap (A. ) be 
the solutions of this equation, and let the c pi (A.) 
be the corresponding solutions of the set (20). It 
is clear that c pi (A. ) with different values of p 
are orthogonal to one another in the metric defined 
by the matrix II aij (A. ) II and that they can thus be 
chosen to satisfy Eq. (16). If we substitute in (19) 
the values obtained for Ap (A.) and for the Cpi (A.), 
normalized according to (16), we find the eigen­
functions of the continuous spectrum of the per­
turbed problem 

where Np (A.) is a normalization factor. One can 
show* that 

If we put 

(22) 

and introduce the function 

CP (A)= cot-~ (~t- 1 AP (A)), (23) 

we can therefore rewrite Eq. (21) as follows 

-;;;Ap = COS ~P (A) ~Ap + sin ~P (A) 61.p, (24) 

where the functions l/JA.p are given by Eq. (15). 
Comparison shows the functions tp (A.), de­

fined by Eq. (23) and by the equation for Ap (A.), to be 
the same as the shift functions, first obtained by 
a slightly different method by I. M. Lifshitz for 
the one-dimensional4 and the many-dimensional6 

cases. Lifshitz showed (see also a paper by 
Kre1n11 ) that if we know the functions tp (A.) we 
can find the difference of the traces of two oper­
ators such as f(L +A) and f(L), where f(x) 
is one of a very large class of functions. One can 
show from the asymptotic behavior of the functions 
~A.p and l/JA.p at large distances from the lattice 
defect that the functions tp (A.) also determine 

*The proof of this statement, as of some other statements 
about the functions ;,t;,_p,is omitted here because it is cumber­
some. These proofs are based upon a consideration of the 
asymptotic behavior of the functions lftt-p at large distances 
from the localized defect. Their asymptotic behavior can be 
found, if one knows the asymptotic behavior of the functions 
<P:Ai. The functions <P:Ai are by (14) expressed as a sum of 
integrals. Lifshitz5 and Lifshitz and Peresada10 have evalua­
ted the asymptotic behavior of similar integrals in connection 
with other problems. 

the phase shift of the wave scattered by the local­
ized defect. This conclusion is a generalization of 
Lifshitz' result12 to problems that are not spheric­
ally symmetric. 

One can use the properties of the functions"' l/JA.p• 
()A.p• and tp (A.) to show that the functions l/JA.p 
form a complete orthonormal set of eigenfunctions 
of the operator L' + A in the continuous spectrum. 

To find the functions ~A.k of the discrete spec­
trum of the operator L' + A we must put A (A. ) = 0 
in Eqs. (19) and (20) and write integrals in the usual 
sense instead of principal-value integrals. The 
condition that Eqs. (20) be solvable gives us an 
equation for the eigenvalues A.k of the operator 
L' + A in the discrete spectrum. The expressions 
for the lPA.k and the corresponding normalization 
conditions can easily be obtained and are therefore 
omitted here. 

Having found the eigenfunctions (15) and (24) of 
the operators L' and L' + A, we can use (11) to 
evaluate S ( n, R, T) and thus also D2 ( n, R, T ) 
from (1 0). We get for S ( n, R, T ) the following 
expression 

h r (h ¥~) di-S (n, R, T) = T )Coth 'LkT F (A, R) y"X 

h"" (hY\) 1 -+ 2 f. coth 'LkT Y\ (nh; (R)) 2 ; 

1 

(25) 

F ("A, R) = ~ {sin2~p (A) ll n61.p (R) 12 -I n~AP (R) 121 
p 

+ (n61.p (R)) (n~AP (R))]. (26) 

Knowing the value of D2 ( n, R, T) for the perturbed 
problem we can easily use Eq. (1) to evaluate the 
time average of any function F ( q • UR) when local­
ized defects are present in the crystal lattice. We 
obtain in that way the complete solution of the 
problem posed in the present paper. 

Expression (25) derived for S (n, R, T), along 
with Eq. (10) for the square of the mean-square 
fluctuation of the displacements of the atoms of a 
crystal lattice with a finite number of defects, can 
be used to draw some conclusions about the behav­
ior of the quantity D2 at large distances from the 
defects. A detailed analysis of Eqs. (25) and (26) 
shows that at large distances R from a defect the 
asymptotic behavior of Eq. (25) for S is deter­
mined solely by the long-wave part of the spectrum, 
so that we can neglect in the expression for S the 
contribution from the optical modes of vibrations 
and the contribution from the vibrations corre­
sponding to the discrete spectrum. One can evalu-
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ate the asymptotic behavior in the general case of 
an arbitrary lattice and of any localized defect. We 
shall not perform here the fairly cumbersome and 
tiresome calculation, but only quote the general 
result. 

For large values of R the asymptotic behavior 
of S is the sum of a finite number of terms of the 
form 

A; ~ G)' coth ( B; ~~) , 

where the quantities Ai and Bi can be evaluated 
in closed form for each given crystal and each 
given perturbation. They depend on the direction 
of the radius vector R at the point of observation, 
on the differential properties of the surfaces 
Ai (k) =A as A__... 0, and on the type of the lattice 
defect. ® is some characteristic temperature 
similar to the Debye temperature, and b is a 
characteristic length of the same order of magni­
tude as the dimensions of the elementary crystal 
cell. 

It follows from the expression given here for 
S that at crystal temperatures T and at distances 
R such that RT « b® the asymptotic form of S is 

A(%Y+B(~Y~ 
where for a given lattice and a given perturbation 
A and B depend only on the vector R/R. In par­
ticular, S"' A (b/R) 3 when T = 0, i.e., at absolute 
zero the extra term in the fluctuation of the dis­
placement decreases in inverse proportion to the 
cube of the distance from the defect. When RT 
» b® this extra term decreases as 1/R2• 

Summarizing the results of this paper we can 
reach the following conclusions: 

1. The time average of any function of the dot 
product of a cons rn nt vector q and the displace­
ment from the equilibrium position UR of the R-th 
atom of any system of atoms which executes small 
vibrations and which is in thermodynamic equilib­
rium with the surrounding medium is uniquely de­
termined by the mean square fluctuation D (n, R, T) 
of the displacements of the R-th atom in the di­
rection of the vector n = q/q. 

2. One can evaluate the fluctuation D (n, R, T) 
in closed form in the case of an arbitrary infinite 
perfect crystal lattice in which there is a finite 
number of localized defects such as foreign atoms 
substituted for an atom, interstitials, vacancies, 
and so on, provided one knows the spectral prop­
erties of the corresponding perfect lattice without 
defects and provided one knows the finite-dimen­
sional operator A which describes these defects. 

Although the determination of D (n, R, T) can 
be reduced to the evaluation of the trace of an oper­
ator, it turns out to be impossible to apply here 
Lifshitz' results 6 on the evaluation of the differ­
ence between traces, since in this case one cannot 
write the operator whose trace determines the 
value of D (n, R, T) as some function of the op­
erator L. 

3. The change in the square of the function 
D (n, R, T), caused by the presence of localized 
deformations in the crystal lattice, is determined, 
according to (10), by the function S (n, R, T); we 
suggested in this paper a special method of evalu­
ating this function. This method is based upon the 
fact that, in the case of localized lattice deforma­
tions described by adding a finite-dimensional op­
erator A to the operator L, it turns out to be pos­
sible to split off from the space H, on which the 
operator L is determined, a subspace H' such 
that all physical consequences caused by the per­
turbation A can be described in terms of the sub­
space H'. This makes it possible to obtain the 
closed Eq. (25) for S (n, R, T ). 

4. As expected, the quantities tp(A), first de­
fined by Lifshitz6 for the case of a three-dimen­
sional lattice and called by him "shifts," oc-
cur in the expression for S (n, R, T). These quan­
tities determine the phase shifts of the waves scat­
tered by a localized inhomogeneity of the crystal. 

5. In the general case of an arbitrary infinite 
perfect crystal with a finite number of localized 
defects, one can find the asymptotic behavior of 
the function at large distances from the defects. 
The asymptotic expression for S includes the 
dependence on the form of the localized irregular­
ity of the lattice. The difference between the mean­
square fluctuations D2 and D2 of the perturbed 
and the unperturbed lattices at absolute zero de­
creases with the distance R as R-3• At suffi­
ciently low temperatures, there is a region in the 
crystal where ( i52 - D2 ) "' AR - 3 + T2R - 1• Outside 
this region ( D2 - D2 ) "' TR - 2 as R __... oo • 

In conclusion, I express my deepest gratitude 
to Professor I. M. Lifshitz for his constant interest 
in this paper, for valuable advice, and for discuss­
ing the results obtained. 
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