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Peripheral collisions of high energy nucleons ( Elab > 1012 ev) are considered. The Weizsacker­
Williams method was used to classify the peripheral collisions and to describe the peculiarities 
of each type of interaction.5 One of the simplest cases (peripheral single-meson interaction) 
is calculated by perturbation methods. 

THE interest in the peripheral collisions of high 
energy nucleons has increased considerably in re­
cent times. This is mainly due to the fact that stars 
with anomalous "two hump" angular distributions 
have been registered and described.1 These stars 
can only be interpreted as the result of a peripheral 
collision with formation of two excited states. The 
kinematics of such a process have been discussed 
repeatedly in the literature. 2- 4 At the present mo­
ment it seems appropriate to us to consider pos­
sible versions of this interaction, assuming that 
the excitation of the nucleons is caused by the ex-
change of rr mesons. 

1. CALCULATION BY THE WEIZsACKER­
WILLIAMS METHOD 

In this method (which we shall call the WW 
method) the problem of the peripheral interaction 
of two nucleons is solved in two stages. In the 
first stage one calculates the probability for a 
head-on collision of a nucleon with the rr meson 
belonging to another nucleon (or of two rr mesons 
belonging to two different nucleons). These proc­
esses lead to the formation of an excited system 
with mass M*. In the second stage one computes 
the decay of the excited system into secondary 
particles. 

The following processes may take place as a 
result of the peripheral interaction of two nucleons. 

1. One-meson interaction. Only one of the nu­
cleons gives up its meson which undergoes a cen­
tral collision with the other nucleon. The recoil 
and the excitation of the first nucleon are neglected, 
i.e., it is assumed that the excitation of the first 
nucleon is small ("' p.c2 ) • 

2. Single virtual rrrr interaction. The meson 
belonging to one nucleon collides with the meson 
of the other nucleon. 

3. Two-meson interaction. Each of the nucleons 

undergoes a central collision with the rr meson 
of the other nucleon. 

4. Double collision of virtual rr mesons (for 
short, double rr rr collision). The meson belonging 
to one of the nucleons interacts with one of the 
peripheral rr mesons of the nucleon which it 
meets in its path. The other rr meson of the 
second nucleon goes through an analogous process. 

For the description of these processes by the 
WW method we write the function p ( E, y, b ) in 
the form* 

p(s, r. b)= A2~(bVI+ (sJr)2), 

n=c=fL= 1. (1) 

For b ~ r 0 ( r 0 is the smallest possible value of 
the impact parameter, which has the meaning of 
the core radius of the nucleon ) this function can 
be approximated by the simpler function 

(2) 

The constant A2 is determined (as it is usually 
done in the WW method6 ) by the condition of nor­
malization to the total energy of the nucleon: t 

()() 

~ ~ p (s, ')',b) sds 2rcbdb = E0 = Mr, (3) 
0 

from where we have A 2 = 2M/ yrr, where M is 

*The function p (E, y, b) has the meaning of the probability 
that a meson of energy E hits a unit area which is at a distance 
b from a nucleon moving with velocity y. Expression (1) has 
been used repeatedly in the literature."•" It can be obtained by 
taking the meson field of the nucleon in its rest system in the 
form of a Yukawa potential. 

tit should be noted that the WW method has an arbitrariness 
in this respect. The point is that neither in the form (1) nor in 
the form (2) can the function p (E, y, b) be extrapolated to the 
region of small b « r0 • However, this region is very important 
in the normalization. The estimates of the cross sections for 
the various types of collisions obtained below, therefore, are 
correct only in order of magnitude. 
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the mass of the nucleon and Eo its energy in the 
center-of-mass system ( c.m.s.). 

Let us consider the one meson collision with 
the help of the WW method. The probability of the 
collision of one nucleon with the peripheral meson 
of another nucleon with energy e: (momentum k 
,... e:) is equal to 

00 

dw = ~ 2rcbdbp (E, "(,b) cr (rc, N) ds. 
r, 

Assuming that the cross section of the purely in­
elastic interaction of the 1r meson with the nu­
cleon, a ( 1r, N), is independent of the energy, we 
find 

It is easily seen that the mass of the excited state 
M* = v'E2-p2 = v' (E0 + e:)2- (p-k)2 is equal 
to M* = 2 .fEE; (here E0 and p are the energy 
and the momentum of the nucleon in the c.m.s. ). 
The probability for the formation of this state is 

dw = cr (rc, N) "(-2e-2r, M*dM*. 

The maximal value of M* is M~ax = 2yfi. 
The total cross section for the process is 

2yYM 

cr= ~ M*dM*"(-2cr(rc,N)e-2r,=2Me-~'•cr(rc,N). (4) 
0 

The angular distribution of the secondary par­
ticles in a one-meson collision should be symmet­
ric in the rest system of the excited state (in the 
following we shall call this system the M* system). 
In order to transform the angular distribution from 
the M* system to the center-of-mass system of 
the colliding nucleons we must know the relative 
velocity of these systems Yr· 

The momentum of the excited state in the c.m.s. 
is equal to 

The energy e: is related to the excitation energy 
M* by e: = (M*/2 )2/My. From this we find 

p = M["(- (M*I2M)2 "(-1 ]. 

It should be noted that the second term on the 
right hand side is always considerably smaller 
than the first term; even for M* = M~ax = 2yfi 
it amounts to 1/M of the magnitude of the first 
term. Therefore p,...., p0. The required velocity 
(or, more precisely, the quantity Yr = ( 1 - v~) -:1/2) 
is equal to 

"(r=PIM*=(MIM*){"(-(M*I2M)2"(-1 }. (5) 

The corresponding half angle of secondary particles 

(i.e., the angle into which half of the total number 
of particles are emitted) in the c.m.s. is 8112 = 1/Yr· 

We can estimate the order of magnitude of the 
angle in the c.m.s. into which the excited nucleon 
is emitted, whereafter it decays into the secondary 
particles; it will be equal to J. ,... p 1 I p, where p 1 
is the perpendicular component of the momentum. 
According to the uncertainty relation we have p 1 
~ 1/b ~ 1/JJ. (b is the impact parameter for a 
peripheral collision). The maximal value of the 
angle J is equal to 

.&max= 1 I bminP = 1 I rop = 2p. I Po• 

2. CALCULATION OF ONE-MESON COLLISIONS 
IN THE PERTURBATION THEORY 

Let us compare the results obtained by the WW 
method with those obtained in the calculation of 
peripheral one-meson collisions by perturbation 
theory, assuming that the excitation is caused by 
the exchange of a single 1r meson (see reference 
7, and also reference 8 ). The graph for this proc­
ess is shown in Fig. 1. The quantities Poi and 
p02 are the 4-momenta of the free nucleons, qi 
and Pi are the momenta of the secondary particles, 
and Mi and M2 are the masses of the intermedi­
ate excited states. 

~\ ___ /" 
;/" -1?!1\\ * p, q, 

FIG. 1 

According to the general rules the total proba­
bility for the process is equal to 

(6) 

where k =Poi -1:pi = - (p02 -1:qj); [ 1] and [ 2] 
are matrix elements of the interaction of the meson 
with the nucleon, leading to the formation of n and 
n' secondary particles, respectively. The proba­
bility dw can also be expressed in the form 

n n' 

dw= ~ ~(k':.P.')'d4Pd1] 2[2J2IJd3p;IJd3qi 
n,n' i j 

(7) 
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where Pi= 1:Pi· Now 
n 

~ ~ [l FIT d3p;o (Por-k- LJ Pt) = WrrN (-k, Por), 
n ' 

n' 

~~[2FITd3qio (Po2+k- ~qi) = w"N(k, Po2), 
n' j 

(8) 

where w ( k, Poi ) is the total probability of the in­
teraction of the 1r meson with the nucleon. In gen­
eral the quantity w (k, Poi) depends on the energy 
of the colliding particles in the c.m.s.; the sum of 
their energies is equal to the mass of the excited 
state Mi (or M2). Hence w (k, Po2) = w (M2). 

We shall assume further that these quantities 
are constant for large energies ( Mi or M2 » M) 
and independent of Mi and M2. Then 

dw ~ d4 P 1 w;,N / (k 2 + [L2 ) 2 • (9) 

It is easily shown that 

d4P1 = (Pr/2£0) d.QP,MrdM1 M 2dM2 , (10) 

where dQpi =sin J. dJ.dcp and J. is the angle be­
tween Pi and Poi· 

Let us examine the denominator of (9) in the 
c.m.s. of the colliding nucleons. For sufficiently 
large energies, when Eoi = E02 » Mi, M2, M, we 
can expand all quantities into a series in powers of 
M/E, which yields 

k 2+ [J.2 = 4 {[J.2 12 + £ 01£ 1 (1- cos&)+ xl2} 2, 

where* 

% = (Mi- M 2) (M~- M 2 ) I 4£~1 

+ (Mi + M~) MiM~ I (2Eor)4 • 

We note that K « J..L 2 for Mi, M2 « J..LEoi /M. We 
then obtain for the probabilityt 

w;N2:: sin it dit M 1dM1M 2dM2P1 

dw~ 8{p.2 j2 + £ 01£ 1 (1- cos it)+ xj 2}2 Eor 

In the region of small angles, ( 1- cos J.) 

(9a) 

« J..L 2/2E~i• expression (9a) is large because the 
denominator is small ( ~ J..L 2 ) ; as the angle in­
creases the expression (9a) decreases rapidly, 
approximately like J.-3• This is the region of 
peripheral collisions, as the perpendicular com­
ponent of the momentum transfer is here of the 
order J..LC. 

In the region of large angles, ( 1- cos J.) 
» J..L 2/2E51, the above calculation is not valid, 

*In the last term we made use of M « M, + M2 , i.e., we have 
assumed that one of the nucleons is excited appreciably. 

tWe use the sign "" in front of this expression, since we do 
not intend to determine the total cross section for the peri­
pheral collisions, but are interested only in its dependence on 
M,, M2 , and{}. 

since one cannot restrict oneself any longer to 
first order perturbation theory. Integrating over 
the region of small angles from zero to J.~ J..L/p01 , 
we obtain 

(11) 

Let us investigate the denominator of this ex­
pression. We have 

2:J.4 + 3tJ.2x + x2 = ([L2 + x) (21J.2 + x). (12) 

We note that, when the excitations M1 and M2 are 
of the same order of magnitude, expression (12) in­
creases rapidly, starting from 

Mr~M2 = (2E~r!J.2)''·=VM:J.r. (13) 

The quantity (13) is considerably smaller than 
M~ax• which appears in the WW method. 

Let us now consider the case when one of the 
nucleons is not excited at all ( M1 = M), whereas 
the other is strongly excited ( M2 » M). It is seen 
that the denominator of (11) stays almost constant 
up to 

and then increases very rapidly as M2 increases. 
Therefore the quantity M2 max (defined in the 
same way as Mtax in the WW method) is equal 
to 

and agrees with Mihax of the WW method. We 
note that we obtain the same result in the case 
when the excitation of the first nucleon is not 
equal to zero, but small, i.e., when M1- M ~ J..L. 

It is seen from the preceding discussion that 
the perturbation calculation on the basis of the 
graph of Fig. 1 is not completely equivalent to the 
WW method. The point is that in the WW method 
one always assumes that one of the nucleons gives 
up its meson and the other nucleon captures it. 
One should therefore expect that the investigation 
of the matrix element corresponding to the graph 
of Fig. 2, where t1 < t 2 always, is more closely 
related to the WW method. Indeed, the probability 
for the strong excitation of the nucleon with the 

Po, 

FIG. 2 
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momentum p02 calculated on the basis of this 
graph has the denominator E01 - E1 --Jp.2 + (p01 -p0 ) 2, 

which increases rapidly as soon as the excitation of 
the first nucleon ( M1 - M ) becomes greater than 
p.. This can be seen easily by calculating the ma­
trix element of graph 2 in the rest system of the 
first nucleon. Thus any strong symmetric excita­
tion of the nucleons is in this case not very prob­
able. The same can be said about the graph in 
which t1 > t 2 always. However, the matrix element 
corresponding to the graph of Fig. 1, which was 
considered above, is the sum of the matrix ele­
ments for the graph 2 (where t 1 < t2 ) and for the 
analogous graph with t 1 > t 2• The probability 
equals the sum of the component probabilities plus 
an interference term. This term makes possible 
the excitation of the two nucleons up to M1 "" -J Mp.y. 
However, when one nucleon is excited more strongly 
than the other, the interference term appears to be 
unimportant. It is essential that the interference 
is not taken account of in the WW method, so that 
the symmetric excitation of the nucleons cannot 
be treated by the WW method. 

The simple virtual 1r1r collision can be described 
in perturbation theory by the graph of Fig. 3. The 
analog of this process in electrodynamics is the 
pair formation by an electron on a nucleus.* How­
ever, it is more convenient to consider this proc­
ess with the help of the WW method and not by per­
turbation theory. 

I z 
' I 

' I 
' I 

P, I~ Pz 

~~ 

FIG. 3 

The probability for this interaction is 

*Pair production in the collision of an electron with a nu­
cleus can be calculated by the WW method in two ways. One can 
expand the field of the electron in terms of quanta and then use 
the known cross section for pair production by a quantum on 
a nucleus, a(y, N). Or one can expand the fields of the elec­
tron and of the nucleus in terms of quanta and then use the 
cross section for pair production in the collision of two quanta, 
a (y, y). The results of these two calculations must be iden­
tical, since both methods correspond to the same graph (Fig. 
3). In the first case the WW method is employed in the point 1, 
and in the second case in the points 1 and 2. The calculation 
presented above [using the cross section a(TT, 77)] corresponds 
to the second method. 

where the integration goes over the plane perpen­
dicular to the line of motion of the nucleons, ex­
cluding the regions where b1 and b2 are smaller 
than r 0; b1 and b2 are the distances from a given 
point to the centers of the nucleons. Using the ap­
proximation (2) we find 

(14) 

The probability for the production of an excited 
state with proper energy M* = 2 ..fE;€; is equal to 

"( 

dw (M*) = f ~ cr (rt, rt) (2M I rtr) 2 s1- 1 ds1 M* dM* 
0 

= "(rt, rt) (2M 2Irt 2r 2) ln r · M* dM* f, (15) 

where 

f = ~ dSe-2 (h,+b,) I b1b2 = ; [e-4'' + (l-4r0) Ei (4r0)). 

It should be emphasized that the production of 
two strongly excited systems is impossible in one­
meson collisions; this can occur only through the 
exchange of two mesons. 

A two-meson collision takes place when a pe­
ripheral meson belonging to one of the nucleons 
interacts with the other nucleon and at the same 
time the meson of the second nucleon interacts with 
the first one. The Feynman graph corresponding 
to this process is shown in Fig. 4. The calculation 
of this process by the WW method was done in ref­
erence 5; here we shall quote only some of the re­
sults. 

FIG. 4 

1. The probability for the double interaction is 
somewhat smaller than the probability for the 
simple interaction, but is still of the same order 
of magnitude (their ratio is % ) . 

2. The probability that the excitation of the nu­
cleons in a double 1rN interaction is the same 
(and, hence, the angular distribution of the sec­
ondary particles is symmetric in the c.m.s.) de­
pends weakly on the energy and is equal to about 
% in the energy region (in the laboratory system ) 
Elab ~ 1012 - 1014 ev. 
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3. The angular distribution of the secondary 
particles in the c.m.s. consists of two parts (cor­
responding to the two excited nucleons ) . However, 
if the decay of the excited nucleons conforms to 
the Landau theory, both these angular distributions 
are quite smeared out, so that their separation is 
practically impossible. 

4. The coefficient of anelasticity for collisions 
of this type should be of order unity. 

The double 1r1r interaction (see Fig. 5) is differ-

Po1 

I 

' 
I 

' I 

"' 
Ji~ Pz 

~11\11> -~,,. 

FIG. 5 

ent from the preceding case both in principle and 
in practice. Firstly, it can occur only if the am­
plitude of the two-meson state is represented in 
the peripheral field of the nucleon with sufficiently 
large weight. The frequency with which these 
cases occur, therefore, gives information not only 
about the average strength of the meson field at 
the perip~ery of the nucleon, but also about the 
functional form of this field. Secondly, the coeffi­
cient of anelasticity for these collisions must be 
considerably smaller than for a head-on or double 
1rN collision; the maximal value occurs when the 
first nucleon gives up to mesons having the maxi­
mal energy E .... yp. in the c.m.s. In this case* 
Kmax ~ 2p./M ~ 0.3. These cases should be ob­
served in the form of "stars" having a small co­
efficient of anelasticity with an angular distribu­
tion which has two maximat (i.e., the function 
dN/ dA., A. = -ln tan e, contains two maxima). 

It should be noted that the interpretation of 
these "stars" is considerably more complicated 
than in the case of "stars" with a large coefficient 
of anelasticity even in the case of a symmetric an­
gular distribution it is here in general not possible 
to determine the energy of the primary particle 
from the angular distribution of the secondary 
ones. 

*The average value of the coefficient of anelasticity is 
K ""' 0.5 Kmax ""' 0.15. However, under the experimental condi­
tions, the average value for the observed stars should be some­
what smaller. 

tif the energy of the colliding mesons is the same in the 
c.m.s., the double mr interaction gives an angular distribution 
with only one maximum. In this case it is impossible to differ­
entiate it from the one-meson interaction. 

In order to predict the number of secondary 
particles and their angular distribution in the 
c.m.s., one must adopt some hypothesis for the 
mechanism of their creation. In our case the use 
of the Fermi-Landau theory is less justified than 
in the case of NN and 1rN interactions.* There­
fore, the question whether one should use some 
other model (for example, the Heisenberg model, 
which assumes maximal energy dissipation) or 
the Fermi-Landau model can be decided only by 
experiment. Some experimental data quoted in 
reference 2 were evaluated in reference 9. It 
follows from these data that in the case of the 
double 1r1r interaction the process is apparently 
described more adequately by the Heisenberg 
theory than by the Landau theory. 

Finally, it is appropriate to make some re­
marks on the manner in which the peripheral 
meson field of the nucleon affects the collision of 
a nucleon with a nucleus. This problem has been 
considered by one of the authors,5 who found the 
following results: 

1. Owing to the presence of the peripheral field, 
a strong excitation of the nucleus is possible, much 
stronger than the excitation studied by Heitler and 
Terraux.11 The probability for this excitation de­
creases with increasing energy. 

2. If the meson present in the peripheral field 
of the nucleon has sufficient energy, it will inter­
act independently of the nucleon, which will give 
rise to the appearance of an accompanying shower. 
The shower as a whole will become asymmetric: 
a large part of the particles will fly "backwards" 
in the c.m.s., i.e., in the opposite direction of the 
primary nucleon. t 

It was found in reference 5 that: a) the number 

*The point is that the Fermi-Landau theory is appropriate 
for the description of classical processes. For a head-on col­
lision of two nucleons and propagation along their impact 
waves (according to reference 10) we have for the action 
S .. p~ = My(l/1-'y) =Mill» 1. 

This process can therefore be considered classical and 
there is no objection to the application of the Fermi-Landau 
theory in this case. For a head-on ITN collision the action is 
of the same order of magnitude as for an NN collision. How­
ever, it can be easily shown that for a mr collision (when it is 
also treated hydrodynamically) the magnitude of the action is 
smaller: S "" 1. This indicates that the "" interaction is a 
quantum process and can therefore follow different laws than 
the NN or ~rN interactions. 

t In view of the asymmetry of the angular distribution, the 
energy can in this case not be determined by the angles. The 
shower has to be symmetrized first, i.e., the accompanying 
shower has to be separated out. The observation of asymmetric 
showers and the problem of their symmetrization has been dis­
cussed earlier by Takibaev!2 
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of particles in the accompanying shower, Nacc. 
is on the average one half of that in the main 
shower, Nmain• and b) the half angle of the ac­
companying shower, 91/2acc• (in the laboratory 
system ) is on the average four times larger than 
91/2 main· The latter means that in the coordinates 
dN/dA., A. the maxima of the angular distributions 
are located at a distance D.A. = log 4 = 0.6. 

We quote here the results of a comparison of 
these estimates with the experimental data. 12•13 

The data of Gurevich, Mishakova, Nikol'skil, and 
Surkova 13 indicate that the probability for a strong 
excitation of the nucleus does indeed decrease as 
the energy goes up. The portion (a) of stars 
caused by nucleons and containing more than 10 
black and gray tracks is for different intervals of 
the energy Elab equal to 

Etab• Mev= 1010 -1011 

IZ= 0.8 
1011--1012 1012_1013 

0.43 0.4 

For a comparison of the theoretical data on the 
accompanying collisions with experiment we made 
use of the summed histograms of six stars of ref­
erence 13 ( 147 tracks; see Fig. 6) and of six stars 
of reference 12 (139 tracks; see Fig. 7 ). All these 
stars are the result of collisions of energetic nu­
cleons ( Elab "' 1012 ev) with nuclei (the stars 
contained black and gray tracks ) . 

d.N/d.l. 
0.8 

0.5 

0.4 

TJ,2 

dN/d log tan 9 
16 

FIG. 6 

FIG. 7 

The symmetrization and separation of the ac­
companying showers was carried out in the follow­
ing way. It was assumed that the maximum of the 
histogram (in the dN/dA., A. coordinates) coin­
cides with the maximum of the main shower. The 
total number of particles in the main shower was 
taken to be twice the number of particles lying to 
the left of the maximum. The solid line in Figs. 

6 and 7 represents the histogram of the collisions, 
whereas the dashed line refers to the accompany­
ing collisions. It follows from these histograms 
that Nmain/Nacc = 2.3 (reference 13) and= 1.8 
(reference 12). The distance between the maxi­
ma is D.A. = 0. 8 (reference 13) and 0. 7 (refer­
ence 12). In our opinion, these data are in satis­
factory agreement with the theoretical estimates. 

It should be noted that the comparison above 
is not sufficiently accurate for the following rea­
sons: a) not all asymmetric showers obtained in 
reference 13 were used, but only those which have 
a clearly defined asymmetry; b) we used summed 
histograms, and additional asymmetries may have 
been introduced in their composition because the 
position of the maximum could not be determined 
accurately. 

In conclusion the authors take this opportunity 
to express their gratitude to Prof. E. L. Feinberg 
for fruitful discussions and interest in this work 
and to Prof. I. I. Gurevich and his collaborators 
for showing us their data. 
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