NEW ISOMER Sn^{113 m}

I. P. SELINOV and V. L. CHIKHLADZE

Submitted to JETP editor January 19, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1012 (March, 1960)

A CCORDING to the systematics of the half-lives of the isomers, one would expect the long-lived (T = 119 days) tin isotope Sn^{113} to have an isomer with a half-life somewhat shorter than that of $\text{Cd}^{111\text{Im}}(T = 48.7 \text{ min})$. Actually, an investigation of the isotope Sb^{113} (T = 7 min) with a double-lens β spectrometer has disclosed that, as a result of positron decay, this isotope is partially transmuted into a new isomer, $\text{Sn}^{113\text{m}}$, with a half-life of $27 \pm 3 \text{ min}$.

There have been observed in the conversionspectrum of Sb¹¹³ electrons with energies 49.6, 75.3, and 77.4 kev, corresponding to conversion of γ radiation of energy 79.3 ± 0.5 kev on the K, L, and M shells. The ratio of the conversion on the K shell to that on the L shell is 1.75.

Theoretical values of this ratio, for transitions of various multipolarities, are: E1 - 9.45, E2 - 3.8, E3 - 0.95, M1 - 7.55, M2 - 3.8, and M3 - 3.56. The extrapolated value for M4 is about 1.7. Consequently, the isomer transition from the metastable state of Sn^{113m} has a multipolarity M4.

Translated by J. G. Adashko 201

REMARK ON THE DECAY OF THE CAS-CADE HYPERON

I. Yu. KOBZAREV, L. B. OKUN', and A. P. RUDIK

Submitted to JETP editor January 23, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1012-1013 (March, 1960)

LF the spin of the cascade hyperon is $\frac{1}{2}$, the amplitude of its decay

$$\Xi^{0} \rightarrow \Lambda^{0} + \pi^{0}, \ \Xi^{-} \rightarrow \Lambda^{0} + \pi^{-}$$
 (1)

can be written in the form

$$A = 2\bar{u}_{\Lambda} \left(a + l e^{i\varphi} \sigma \mathbf{n} \right) u_{\Xi}.$$
 (2)

Here a and b denote the amplitude for the formation of Λ^0 and π in the S and P states, respectively, and φ is the difference of the phase shifts for the scattering of the π meson by the Λ hyperon in these states. The unit vector **n** is directed along the momentum of the Λ^0 hyperon in the rest system of the Ξ hyperon, the σ 's are the Pauli matrices, and u_{Λ} and u_{Ξ} are twocomponent spinors.

If the polarization vector of the Ξ hyperon (in the rest system of Ξ) is denoted by η and the polarization vector of the Λ hyperon (in the rest system of Λ) by ζ , the probability of the decay of a polarized Ξ hyperon with formation of a polarized Λ hyperon, as calculated with the help of the amplitude (2), has the form

$$W(\mathbf{n}, \mathbf{\eta}, \mathbf{\zeta}) = a^2 + b^2 + 2ab\cos\varphi(\mathbf{\zeta}\mathbf{n} + \mathbf{\eta}\mathbf{n}) + (a^2 - b^2)\mathbf{\zeta}\mathbf{\eta}$$
$$+ 2b^2(\mathbf{\zeta}\mathbf{n})(\mathbf{\eta}\mathbf{n}) + 2ab\sin\varphi[\mathbf{\eta}\mathbf{\zeta}]\mathbf{n}.$$
(3)

Formula (3) contains, of course, all possible correlations which were recently considered by Teutsch, Okubo, and Sudarshan.¹ With regard to this formula we should like to make the following observation. As is seen from formula (3), the polarization of the Λ hyperons in the direction perpendicular to the plane defined by the vectors η and **n** will be zero unless $\varphi \neq 0$. The study of the polarization of the Λ hyperons in this direction (together with the measurement of the longitudinal polarization of the Λ hyperons, for example) permits, therefore, the determination of the difference of the S and P phase shifts in the scattering of π mesons by Λ hyperons.

We note that, by isotopic invariance, the value of φ_{-} , obtained from the decay of the Ξ^{-} hyperon, and of φ_{0} , obtained from the decay of the Ξ^{0} hyperon, should be identical.

For comparison we mention that the S phase shifts for the scattering of a π meson by a nucleon at corresponding energies (the momentum in the center-of-mass system is equal to $m_{\pi}c$) are approximately equal to $\alpha_1 \approx -7^{\circ}$ for the channel $T = \frac{1}{2}$ and to $\alpha_3 \approx +10^{\circ}$ for $T = \frac{3}{2}$ (reference 2). The resonance P phase is equal to $\alpha_{33} \approx 12^{\circ}$, while the other P phases are close to zero.

² J. Orear, Phys. Rev. **100**, 288 (1955).

Translated by R. Lipperheide 202

¹Teutsch, Okubo, and Sudarshan, Phys. Rev. **114**, 1148 (1959).

CONCERNING THE ARTICLE BY S. M. BILEN'KIĬ, R. M. RYNDIN, Ya. A. SMORO-DINSKIĬ, AND HO TSO-HSIU, "ON THE THEORY OF NEUTRON BETA DECAY"

Submitted to JETP editor January 27, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1013 (March, 1960)

WEINBERG¹ proved a theorem from which it follows that the full probability for a process of the type $\alpha \rightarrow \beta + l + \overline{\nu}$ (α and β are arbitrary strongly interacting particles and l is a lepton) does not contain V-A interferences. It is easy to see that the expression (12) for the total probabilitity of neutron decay given in our paper² satisfies this condition, since the dependence on the first power of λ is only apparent. Indeed, in the approximation $E_0/M = \Delta/M$, which we used, expression (12) may be rewritten as follows:

$$W = \frac{G^2}{(2\pi)^3} (1+3\lambda^2) \left\{ m^4 \left(E_0 - \frac{m^2 + 2E_0^2}{2M} \right) \ln \frac{E_0 + \sqrt{E_0^2 - m^2}}{m} + \frac{2}{15} \sqrt{E_0^2 - m^2} \left[E_0^4 - \frac{9}{2} E_0^2 m^2 - 4m^4 + \frac{E_0}{M} \left(E_0^4 - 2E_0^2 m^2 + \frac{49}{4} m^4 \right) \right] \right\}.$$

We are grateful to Prof. J. Bernstein for bringing the work of Weinberg to our attention.

² Bilenkiĭ, Ryndin, Smorodinskiĭ, and Ho Tso-Hsiu, JETP **37**, 1758 (1959), Soviet Phys. JETP **10**, 1241 (1960).

Translated by A. M. Bincer 203

PRODUCTION OF "SUPERCOLD" POLAR-IZED NEUTRONS

G. M. DRABKIN and R. A. ZHITNIKOV

Leningrad Physico-Technical Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor January 27, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1013-1014 (March, 1960)

THE rapidly developing research on "cold" neutrons could be greatly widened if "supercold" neutrons with energies of the order of 10^{-4} to 10^{-6} °K could be successfully obtained. However, at moderator temperatures of 1° K, the yield of neutrons with energies of the order of 10^{-5} degrees K amounts to only 10^{-11} of the total flux. To increase the yield of "supercold" neutrons, a new moderation method is proposed below, based on the interaction of the neutron's magnetic moment with a non-uniform magnetic field.

When a neutron crosses a magnetic field H, the change in the kinetic energy ϵ of the neutron will be equal to

$$\Delta \varepsilon = \int_{0}^{s} \mu_{eff} \frac{\partial H}{\partial s} ds,$$

where μ_{eff} is the component of the neutron's magnetic moment in the direction of the field H, and s is the path traversed by the neutron in the field. Since the region affected by a magnetic field can be separated into two parts, in which the gradients are directed in opposite directions, then for μ_{eff} = const we have $\Delta \epsilon = 0$.

The neutron energy can be changed by a corresponding change in the sign of μ_{eff} , i.e., by a reorientation of the neutron spin at the instant when it passes through the maximum of the magnetic field. For this purpose a uniform magnetic field, falling off to zero at the ends, is applied along the neutron path. When a neutron with its moment opposed to the field enters the field, it is acted on by a retarding force $F = \mu_{eff} \partial H/\partial s$ (neutrons with spins oriented in the opposite direction will be accelerated). At the instant when it reaches the maximum field H_0 , where $\Delta \epsilon = \mu_{eff} H_0$, the change in speed will equal

$$\Delta v_1 \approx \mu_{eff} H_0 / m v_0$$
,

where m is the mass and v_0 the initial velocity of the neutron.

If a field H_1 of radio frequency $\omega = \gamma H_0$ is applied in a direction perpendicular to H_0 , and if it satisfies the condition ${\rm H}_1\!\Delta t$ = $\hbar/g\mu_N$ (Δt being the time of flight of the neutron through the field H_1 , g the gyromagnetic ratio, and $\mu_{\rm N}$ the nuclear magneton), then the result will be a reversal of the spin of the traveling neutron, and consequently a change in the sign of μ_{eff} . This will cause retardation of the neutron during its exit from the constant-field region as well as during its entrance, and the total loss in velocity will be $2\Delta v_1$. The reorientation of neutron spins can be accomplished in a field $\,H_0\,$ of length 2 to 5 cm, with $H_1 \sim 1$ gauss. The velocity lost by a neutron during a single passage through the field is very small. Thus, if $H_0 = 20,000$ gauss and the initial velocity is 2×10^3 cm/sec we have $2\Delta v_1 = 100 \text{ cm/sec}.$

¹S. Weinberg, Phys. Rev. **115**, 481 (1959).