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(the other terms are of higher order). The first 
term takes into account the effect of cg on the 
amplitude of the field, while the second essentially 
expresses the "phase shift" associated with the 
finiteness of cg. Thus, in principle, cg can be 
obtained from a measurement of ER· In refer
ence 5 it is proposed to measure the phase shift 
to obtain cg; however, it should be noted that 
while reference 5 claims this phase shift to be a 
first-order effect ( kR), it is really of third order, 
ik3R3 /2 ::::; iv3 / c~, as is evident from (1) ( v is the 
amplitude associated with the linear velocity of the 
oscillator). For the experiment proposed in ref
erence 5, it would be necessary to measure an 
angle ::::; 10-17 radian, taking cg = 3 x 1010 em/ sec. 
At the present time, phase shifts of 10-5 -10-6 ra
dian are known to have been measured.7 

From (1) we see that the decrease in amplitude 
is frequency dependent and at a frequency w/2rr 

"' 200 cps, and at a distance R = 1 m, we have 
k2R2/2::::; 10-11 • Such a small decrease in ampli
tude can be measured if the oscillator frequency 
is modulated at some low frequency, ::::; 0.5 cps, 
and the signal detected synchronously. With such 
an arrangement, the band-width could be decreased 
to ::::; 10-3 cps. 

As a detector of the gravitational field, Weber1 

has proposed a piezoelectric transducer, together 
with associated amplifiers. Such a transducer 
would consist of a piezoelectric crystal between 
two sufficiently large masses; the inhomogeneous 
gravitational field due to the oscillator would lead 
to a stress in the crystal. We note a number of 
technical difficulties which would have to be solved 
before such a scheme would work. 

The frequency response of transducer plus am
plifiers would have to be horizontal to at least one 
part in 1011 • This implies that the transducer and 
the reactive elements in the amplifier would have 
to be temperature controlled within 0.1 o C. After 
demodulation, the signal, proportional to k2R2, 

has an amplitude of only 10-10 volts. 
Such small signals can be measured with the 

photo-electric amplifier built by Kozyrev. 8 The 
oscillator can be a mechanical rotator with diam
eter D0 = 2 m, operating at a frequency 25-50 
cps, and with four additional masses distributed 
along its circumference. The stress appearing 
upon rotation is ::::; 103 kg/cm2 which is not too 
large for the usual grades of steel. 

In conclusion the authors would like to thank 
V. V. Migulin and M. S. Akulin for their discus
sions of versions of the experiments. 
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IT has been shown in a number of papers 1- 4 that, in 
first order in a, the radiative corrections to JJ.
meson decay lead to a finite renormalization of the 
interaction constants (with different renormaliza
tion for the vector and axial-vector parts). At the 
same time the analogous correction for {3 decay, 
for example that of the neutron, diverges, and 
moreov~r this divergence cannot be removed by 
ordinary mass renormalization. 

The cause of the different behavior is that the 
diagram for JJ. decay is of a type analogous to the 
diagram for the emission of a photon. In fact, the 
interaction Hamiltonian for the decay of a JJ. me
son can be written either in the ordinary V-A form 

H = ;'2 (v: 'Ya (1 +is) !:.1.)(ej Ia (1 +Is) I v), (1) 

or in the equivalent form 

H =J2 <elra(l+is)I:J.)(vlla(l +io)\v); (2) 

the change from form (1) to form (2) consists only 
in interchange of two particles of the same helicity, 
v and e. In the latter expression the radiation 
corrections affect only the first factor (there are 



LETTERS TO THE EDITOR 725 

no charged particles in the second), which differs 
from the electrodynamic current < e I 'Y~-tl e> by 
the fact that the mass of the particle changes in 
the transition, and also by the presence of the fac
tor y5 (the current axial vector is y5y a). 

Since, as is well known, the divergent integrals 
in electrodynamics do not depend on the mass of 
the particle, the fact that it changes cannot invali
date the conclusion from Ward's theorem5 that the 
vertex-part and self-mass divergences cancel. 
The factor y5 can also change nothing in this con
nection, since the replacement of the wave function 
1/! by y5lf! leads only to a change of the mass. 

It follows that a finite result will be obtained 
when one calculates the radiative corrections to 
~-t-meson decay (and to any other process of in
teraction -of ll mesons with electrons: p. - e 
+ v + v + 'Y, e + v - e + v, 1-t + v - ll + v, and so 
on) in any order (in e2 ) of perturbation theory. 

In the case of the {3 decay of the neutron or 
the capture of a ll meson by a proton the Hamil
tonian does not reduce to the electrodynamic form. 
In fact, 

G 
H = y2 (p /I a (I + 15) J n) (e / Ia (1 + 16) I v) (3) 

and it is not possible by interchanging particles of 
the same helicity to group the charged particles in 
one factor - to do so one must interchange n and 
e. This latter interchange does not leave the 
Hamiltonian in the same form, but changes it to6 

H=VZG(e[(l-l5)1fi><nJ(I+r5)1v>, (4) 

which, as is well known, is not renormalizable 
(even if one does not take into account the mag
netic moment of the neutron). It can be seen 
from this that only for processes in which no 
particles appear except electrons, ll mesons, 
neutrinos, and photons is it possible to calculate 
the radiative corrections. 

In this connection one cannot at the present 
time predict theoretically the relative size of the 
constants calculated, on one hand, from the life
time of the neutron, and on the other hand from 
{3 transitions between nuclei of spin zero ( o+- o+ 
transitions); the experimental determination of 
this ratio is an important problem. 
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J T is impossible in practice to carry out a phase
shift analysis at high energies, owing to the large 
number of partial waves participating in the inter
action. It is therefore important to establish what 
information may be extracted from the experimen
tal data. 

In this note we show how to determine the mini
mum number of partial waves Lmin necessary to 
describe the experimentally known total elastic 
scattering cross section ael and the differential 
cross section at a given angle a ( ~1 ). The follow
ing inequalities may be proved: 

a) Spinless particles: 

(1) 

b) Interaction between particles of spin 0 and !: 
max {2:0 , 2:1 } > 4r:a (&1) I a,1• 

c) Not identical Dirac particles: 

max {2:0 , E1 , I:2} > 4;ra (&1) I a,1• 

d) Identical Dirac particles: 

In these inequalities 
t; 

'<' "\.1 21 1 (l - m)l (m) 2 
"-'m = L.J ( + ) (I + m)! [Pt (cos &1)! , 

l=m 

L 

I:~= LJ [1- (-1)1] (21 + 1) i~ ~:;\ [P)m> (cos &1)] 2, 
l=m 

L 

(2) 

(3) 

I:" 'i\.1 ' )' 21 . (/- m)! (m) m=L.J[l-r-(-1 ]( +I)(I+m)![Pt (cos&1)]2.(5) 
l=m 

The largest of the entries in the curly brackets 
is to be used on the left hand sides of Eqs. (2) - (4). 


