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Parameters fk, characterizing the degree of nuclear orientation, are calculated for orienta
tion produced by saturating a forbidden resonance and for a double resonance. Modifications 
of the double resonance method are examined. 

l. During 1956 and 1957, Feher and Jeffries pro- be denoted by m', while the state M = - !. m 
posed two new methods for obtaining polarized nu- will be denoted by m. 
clei. Jeffries' method1 is based on the saturation The ordinary paramagnetic resonance lines in-
of a forbidden paramagnetic resonance, while duced by the alternating field are due to transitions 
Feher's uses double resonance.2 Experimentally with selection rules ~M = ± 1, ~ = 0, and energy 
both methods have led to observable polarizations.3- 8 differences given approximately by g{3H + Km. 
In this paper we calculate the quantities fk which Those transition which have selection rules ~M = 0, 
characterize the degree of orientation, 9 and discuss ~m = ± 1 and energy differences ~ K/2 correspond 
the two methods. to nuclear magnetic resonance (more precisely, 

2. Let the sample be a paramagnetic salt or there will be correction terms of order B2/g{3H, 
silicon (or germanium) doped with nuclei having gif3H, and P). 
valence five or three. We assume that the nuclei The forbidden paramagnetic resonance lines 
of the paramagnetic ions, or of the impurity atoms, correspond to transitions with ~M = ± 1, ~m = ± 1 
have spin, and if the sample is a paramagnetic salt, and energy differences of about g{3H + K ( m +-!) .10• 11 

assume that the electron cloud in the paramagnetic In particular, if the spin Hamiltonian is axially sym
ion has effective spin!. For silicon or germanium, metric about the direction of the magnetic field, then 
we assume that the temperature is so low that the transitions will occur with ~M = -~m = ± 1 (pro-
impurity atoms are not ionized. vided that the alternating field has a non-zero com-

Such a system can be thought of as a set of elec- ponent along the main field). In other cases, other 
tron clouds with spin S, and a set of nuclei with transitions will be possible, with selection rules 
spin I, the electron clouds being those of the para- ~M = ~m = ± 1. 
magnetic ions (with an extra electron or hole). In There are also relaxation transitions, as follows: 
a strong magnetic field, the energy levels of such 1. Vertical transitions: ~M = ± 1, ~ = 0 
a system are given by the equation (purely electronic relaxation). 

2. Horizontal transitions: ~M = 0, ~m = ± 1 
EMm=Mg~H+KMm-+-0(82 /.!!.:-m, !!AH, P). (1) 

(purely nuclear relaxation). 
The notation is standard (in particular, M and m 3. Flip-flop transitions: ~M = -~m = ±1. 
are the projections of the electron and nuclear spins 4. Flip-flip transitions: ~M = ~m = ± 1. 
respectively on the axis of quantization). 5. Quadratic transitions: ~M = 0, ~m = ±2. 

Figure 1 shows the energy levels when all terms We note that the contact interaction between elec
can be neglected, except the Zeeman energy of spin tronic and nuclear spins can give only flip-flop 
S (as is the case when computing Boltzmann fac- transitions. The dipole-dipole interaction between 
tors). For conciseness, the state M = !. m will these spins can give transitions of type 1, 2, 3, and 

[ /-1 p+/ Jl p-1 -(1-t) 

FIG. 1 
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4. The quadrupole interaction between the nucleus 
and the electric field of the electron cloud gives 
rise to transitions of types 5 and 2. 

3. Jeffries' method is based on saturating the 
forbidden paramagnetic resonance and can be used 
when the vertical relaxation is predominant over 
other modes. These conditions are always fulfilled 
for paramagnetic salts, and also for silicon, doped 
for example, with As 76 or Sb122• In general, it need 
not be more difficult to saturate a forbidden reso
nance than an allowed one. Forbidden transitions 
are less likely than allowed ones, but on the other 
hand the relaxation rate of the forbidden transition 
is usually smaller than that of an allowed one. 

Returning to Fig. 1, suppose that one of the 
transitions ~M = - ~m = ± 1 is saturated (in 
particular, the transition J.l.- J.l. -1' where J.l. 
can take on values I, I- 1, ... -I+ 1). Figure 2 
shows three pairs of levels from Fig. 1, the levels 
corresponding to· nuclear spin projections J.l. + 1, J.l. 
and J.1. -1. Let W (JJ.) be the probability (per unit 

jHI' p' p-t' 

p·t Jl p-1 

FIG. 2 

time) that the alternating field induces the transi
tions J.l.- J.l. -1'. In this case there are three 
characteristic times: the time Tr = 1/W (JJ.) re
quired for the alternating field to cause one transi
tion (on the average), the vertical relaxation time 
Te, and the nuclear relaxation time Tn (i.e., the 
relaxation time associated with changing m). 

Suppose these times satisfy the inequalities 

T,~T.~T,. 

In this case, in a relaxation time of order Tr, the 
alternating field will make the populations of the 
states J.1. and J.1. -1' equal. In a time of order Te 
equilibrium will be established between the states 
J.1. and M', and also between J.l. -1 and J.l. -1'. In 
a time T n• full equilibrium will be established. 
We will use indices r, e, and n to distinguish 
between the orientation parameters corresponding 
to these three stages. 

It is easy to obtain the results* 

fr __ tanh o 
t- - 'LI (L.I + 1) ' 

3(2p.-1) t; = - '21 ('2/ + 1) ('21- 1) tanh o; (2) 

f• _ tanh a 
1 - - I ('21 + 1) ' 

fe 3 (2p.- 1) 
2 = - 1 ('.!./ + 1) ('2! _ 1) tanh o, (3) 

where o = g{3H/2kT. 

*The fk are normalized so that their maximum value is 1.9 

It is also easy to find an expression for the 
mean value of mk (where k is an arbitrary, posi
tive integer): 

(mk)- (mk)0 = -rz tanh o. ([.!.k- ([.!.- 1 )k]/(2/ + 1 ), (4) 

In Eq. (4), the index zero denotes no saturation, a 
is i in the first stage ( r ) , and 1 in the second 
( e ) . From this last formula, it is easy to find the 
values of f3, f4, etc in the first two stages. It 
turns out that 

n = 21~ (5) 

for all k. 
Buishvili12 has obtained the following expressions 

for f? and f¥, on the assumption that the nuclear 
relaxation is due to the contact interaction only: 

f~=- [I(I+1)-:"(:"-1)]sinha; 
I [(I+ 1-t") e-s +(I+ p.) e5J 

f~=- [I(I+1)-v(:"-1)](2p.-1)sinho (6) 
" I [(I -i- 1-t"l e s +(I+ p.) e5] (2/ -1) 

What is the physical meaning of these results? 
f1 is negative because the alternating field causes 
more transitions from J.l. to J.l. - 1' than the other 
way around (the population of the state J.l. being 
larger before saturation), with the result that the 
mean value of the projection of the nuclear spin 
decreases. Similarly, it is easy to see why f2 is 
proportional to 1 - 2 J.l.. Indeed, it can be shown 
that if J.l. > !. then <m2> decreases when the 
resonance J.l. -- J.l. -1' is saturated, while if J.l. 

< !. then <m2> increases. 
From the formulas for f1 it follows that 

1 f~ I< If~ I < If~ I, 
which is also not difficult to understand. After the 
populations of the states J.l. and J.l. -1' have be
come equal, vertical relaxation occurs between 
the states J.l.' and J.l., as well as J.l.- 1' and J.l. -1, 
followed by transitions J.l.- J.l. -1' induced by the 
alternating field. When nuclear relaxation enters 
the picture, there will be transitions between the 
levels on the left in Fig. 1 to those on the right. 
All this increases the population of states with 
small m. 

If the inequality Tr « Te does not hold, equi
librium under the alternating field and under ver
tical relaxation will be established simultaneously, 
and formulas (2) will not be applicable. If the in
equality Te « Tn is violated, vertical and nuclear 
relaxations will establish equilibrium at the same 
time, and formula (3) will no longer hold. 

The equations (6) remain valid in all cases, ex
cept that if the transitions J.l.-- J.l. -1' are not com
pletely saturated (which will be the case if Tr 
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"' Tn), then the right hand sides must be multi
plied by a factor s (Jl) which tells how saturated 
is the transition. 12 

At first sight it would appear that to get maxi
mum polarization, Tn should be as small as pos
sible. However, this is not the case because when 
the nuclei relax quickly it is hard to saturate the 
forbidden transition. 

Finally, it is easy to show that if the forbidden 
transition Jl .....--. Jl + 1' is saturated, the minus sign 
in formulas (2) and (3) has to be replaced* by a plus 
sign, and 2JJ. - 1 replaced by 2JJ. + 1. The formulas 
for if and if become much more complicated 
because in this case the alternating field and the 
nuclear relaxation cause different transitions. 

4. We now consider the double resonance 
method of orienting nuclei. Bloch has shown 13 that 
an adiabatic fast passage through a resonance re
sults in an inversion of the two populations, pro
vided the resonance is swept through quickly 
enough. In the following, the inverted pair of lev
els i and k will be denoted by the symbol [ i, k]. 

In Fig. 1 (or 2), let the pair of levels [ Jl, !l' ] 
be inverted. The nuclei will not be polarized as a 
consequence of this, and so the amount of polari
zation will remain small. Now let us invert one 
of the pairs [JJ., JJ.-1 ], [JJ., Jl+ 1 ], [JJ.', JJ.-1' ], or 
[JJ.', JJ.+ 1' ]. This will result in a significant nu
clear polarization. 

For example, the two inversions [JJ., JJ.'] and 
[JJ.', JJ.- 1'] are equivalent to exchanging the pop
ulations of the levels Jl and Jl - 1'. As a res~lt, 
the number of nuclei with spin projection Jl - 1 
will increase, while the number with spin Jl will 
decrease. This leads to a negative nuclear polari
zation (f1 < 0 ). 

The final expressions for f1 and f2 in the four 
possible cases are given below: 

f + tanh o 
1 = -- I (21 + 1).' f ' 3 (21~ -1) t h ( ) 

2 ~ :=:: /('.!.1+ 1)(2./-t) an o, 7 

the upper sign corresponding to inverting first the 
pair [JJ., ll'] and then [JJ., Jl -1 ], while the lower 
sign corresponds to inverting first [ Jl, !l' ] and 
then [JJ.', JJ.-1' ]. Furthermore, 

f tanh o 
1 = =t= I (!.1 + 1) ' 

- 3 (21~ + 1) 
f2 = +I(::.I+i)(U- 1) tanho, (8) 

where the upper sign corresponds to the inversion 
[JJ., JJ.+ 1] after [JJ., ll'] while the lower one corre
sponds to [JJ.', Jl + 1'] after [JJ., JJ.' ]. 

Formulas (7) and (8) are applicable only in the 

*On the right hand side of formula (4), ll- 1 must be re
placed by ll + 1. 

case where the time between the two inversions 
is significantly smaller than the vertical relaxation 
time Te. If this inequality does not hold, less ori
entation will result because partial equilibrium be
tween the levels Jl and Jl' will have been estab
lished by the time the second inversion occurs. 

The orientation obtained by Feher's method will 
decay away with the nuclear relaxation time Tn. 
Although vertical relaxation transitions occur be
tween the two inversions, they do not change the 
projection of the nuclear spin. 

From the results given above, it follows that 
the values of the fk obtained by Feher's method 
are the same as those in the second stage of Jef
fries' method. For example, inverting the two 
pairs [JJ., JJ.'] and [JJ.', Jl -1'] gives the same 
result as saturating the forbidden transition Jl 
.....--. JJ.-1'. Clearly, the two inversions can be 
replaced by one - the one being an inversion of 
the two levels in the forbidden transition. For 
example, instead of inverting the pairs [JJ., Jl'] 

and [JJ.', Jl- 1' ], it is sufficient to invert the pair 
[JJ., Jl -1' ]. 

5. Different variations have been proposed on 
the method discussed above. 14•15 For example, we 
could saturate the transition .Jl .....--. Jl', and then 
either saturate or invert one of the horizontal pairs 
(see Fig. 2). It is easy to see that if we were to 
saturate the transition Jl .....--. Jl' and then invert 
one of the pairs [JJ., Jl + 1 ], [ Jl, Jl- 1 ], [ ll', Jl + 1' ], 
or [JJ.', JJ.-1'], the resulting orientations fk would 
be half as big as those given by formulas (7) and 
(8). In other words, the values of fk so ohtained 
would be those corresponding to the first stage in 
Jeffries' method. The orientation would decay to 
its equilibrium value with a relaxation time of 
order Tn. 

The values of the fk would not change if the 
saturating field were to be removed after the hori
zontal pair of levels was inverted. When the satu
rating field goes off, vertical transitions between 
the levels Jl and JJ.' take place, but these do not 
change the projection of the nuclear spin. 

6. Another possibility is to saturate one of the 
vertical and also one of the horizontal pairs of 
levels. It is not difficult to show that 

(mk> - (m")o = - 21 ~- 1 {rfL" + (1.1.- I )"l 

- 2 [2t.t" -L (r.1.- I)" (I + e± 23)l} 3 + e:r:2S ~ I i ' 
(9) 

where k is any positive integer and the upper sign 
in the exponents corresponds to saturating the tran
sitions Jl- !l' and ll' ...-- JJ.-1', while the lower 
one corresponds to Jl .....--. ll' and Jl ...-- Jl - 1. The 
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index zero denotes no saturation. Furthermore, 

(mk)- (mk)o=- :!.1 ~ 1 {[p.k + (fL ,- I )k] 

- 2 [2p.k + (u. + I )k ( l + e±2&)l} 
3 + ei2& ' ' 

(10) 

where the upper sign in the exponents corresponds 
to saturating the transitions J.1. - JJ.' and JJ.' ..--.. 
J.1. + 1' while the lower one refers to J.1. - J.1. 1 and 
J.1.- J.1. + 1. As in the preceding cases, the polari
zation decays away with the relaxation time Tn. 

If both saturating fields are turned off, the de
gree of nuclear orientation will not change for 
times less than Tn. When the field saturating the 
transition J.1. - J.l.' is turned off, vertical transi
tions will occur, but these do not change the pro
jection of the nuclear spin. When the field satu
rating the horizontal transitions is turned off, 
transitions will occur with relaxation time Tn· 
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