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The absorption of characteristic waves in a uniform magnetoactive plasma at frequencies 
close to the gyromagnetic frequency and multiples of this frequency is investigated, taking 
account of the thermal motion of the electrons. Collisions and specific plasma absorption 
mechanisms are considered. 

IN an earlier work of the author 1 (referred to 
hereinafter as I) the absorption of electromag
netic waves in a plasma (with thermal motion of 
the electrons taken into account) was investigated 
by means of a general dispersion equation for char
acteristic waves of all three possible types: ordi
nary waves, extraordinary waves, and plasma waves 
(denoted 1, 2 and 3). However, we have not ana
lyzed in I cases in which the frequency is close to 
the gyromagnetic frequency WH or its multiples 
2wH, 3wH, etc. In the present work we investi
gate absorption at these gyromagnetic frequencies, 
so that this paper represents a direct extension of 
I. 

The theory of gyromagnetic resonance absorp
tion of waves in a plasma has already been devel
oped. 2- 4 In certain respects the present analysis 
is more general. Both the damping in time and 
the absorption in space are determined for all 
three types of waves. The first resonance and 
certain problems associated with collision effects 
are considered in greater detail. In addition, we 
make estimates of certain quantities, give numer
ical examples, and refine certain of the results 
obtained in references 2 and 3. 

We determine the absorption by starting with 
the dispersion equation of I [(Eq. 1.8)], which will 
not be written out completely here. This equation 
was obtained by solving a linearized system of the 
electrodynamic equations and the kinetic equation 
for the electrons. The problem was formulated 
as follows: We assume that at an arbitrary time 
t the value of the non-equilibrium part of the dis
tribution function is given in the plane z = 0. Then, 
as the perturbations propagate along the z axis 
(z > 0 ), the asymptotic behavior of the Qelds is 
determined by a function of the form eikz 

= eikz-qz, where k is the wave number and q 
is the absorption factor. Another formulation of 
the problem, such as used in references 2-4, is 
possible. In an infinite space, at t = 0, we may 
prescribe a periodic perturbation with wave num
ber k. Then the field varies in time in accord
ance with the asymptotic relation ePt = e-iwt-yt 
where y is the damping factor. 

Below, in Section I, we calculate absorption in 
the frequency region close to WH· In Section II we 
analyze absorption at w ""' 2WH and w ""' 3wH. In 
the last section we discuss the results and give 
numerical examples. 

I. ABSORPTION IN THE REGION OF THE FffiST 
GYROMAGNETIC RESONANCE 

In this section we investigate the absorption, 
assuming that the frequency w is close to the 
gyromagnetic frequency WH, so that 

(1.1) 

Furthermore, in accordance with I, we assume that 
the following condition is satisfied: 

where a is the angle between the direction of prop
agation and the direction of the fixed magnetic field 
H0, K is the Boltzmann constant, T is the electron 
temperature, and wH = eH0 /me ( e and m are the 
charge and mass of the electron). Taking account 
of the conditions given in (1.1) and (1.2), we can 
omit a number of unimportant terms from the gen
eral dispersion equation. We thus obtain the equa
tion used as the starting point for this section: 
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iwwg {2rr/2/~ rt- (ii2 sin2 oc I 2w~1) I~ 1{2}. --f w~ {l;i I~ (<u2 - c2k2 sin 2 oc) -: r:/2 (l;i + /~) <2<•J2 - c2k2 (I + cos2 oc)) 

+ (k2 sin2 ocrr I 4wit) <c2T/~ (I + cos2 oc)- 2<o2) - (c2k3 I WH) sin2 oc cos oc/~ rt} 

- (iw~j 2w) (c2k2 - w2) {(c2k2sin2oc- 2w2) (/;i-f-/~)+ 4rr (c 2k2 cos2 oc- w2) / 2 -f- (2c2Jl3 sin2 occosoclwH) T{ 

-+ o <2rrc2k2 cos2 a,Fi -· c2k 2 sin2 oc (I;i -/;i+))}- (c2k2 - 1u2) 2 = 0, (1.3) 

where k = k + iq, and w0 =-../ 47re2N/m is the fre
quency of the plasma oscillations ( N is the electron 
concentration). The integrals I~, I[, and If are 
given by 

+ -./In·-~ exp(-mv;/2><T)dvz 

Io = V 2n><T c i (-"':±."'H)+ v + {ii'vzcos a ' 

If~ y. m- \ vzexp(- mv;f2><'!_)d1Jz ' 

LnxT ~ i (-"'±"'H)+ v + ikv2 cos a 

± _ (__!!!___ \"'' ~ v; exp (- mv; I 2><T) dv 2 

/2 - ., T) -
-"" c i (-w±wH)+v+ikv2 cosa 

(1.4) 

where v is the effective number of collisions be
tween electrons and other particles. The expres
sions for I0, I1 and I2 are obtained by putting 
WH = 0 in Eq. (1.4). In computing all these inte
grals (I), the integration is carried out over a 
contour C which is chosen in the same way as in 
reference 1. 

We shall be concerned here mostly with weakly 
attenuated waves. The necessary conditions for 
weak attenuation, as can be verified by calculation, 
are the inequalities 

w ~V><T j m kcosoc, <u~v. (1.5) 

Using the conditions (1.5), we can obtain the usual 
approximate expressions for all the I integrals 
except I0 1 2• The denominators of the integrands 

' ' in the latter contain the difference w- WH. The 
computation of these terms will be considered in 
detail. In considering the resonance integrals 
I0 1 2, we must choose a path C such that the 

' ' singularity (pole) Vz = Vz is encircled from 
below. This applies for all the I integrals. If 
the pole is in the lower half plane, the integration 
must be carried out over the path C shown in 
Fig. la. However, if the point Vz = Vz lies in 

----::-c---lmv.=D 

b 

FIG. 1. Integration paths C for the integrals 
in Eq. (1.4) for Imvz < 0 and Imvz > 0. 

the upper half plane, it is sufficient to integrate 
along the real axis, as in Fig. lb. From the fact 
that the denominators in the integrands of It 1 2 

' ' vanish, we have when q « k 

ev --- ---+-~ 1 (w- "'H vq) 
R z - cos a k · k2 ' 

' 1 { v' q (w- "'Hh Imv- ---- -- ) 
z--- cos Cl \ k k1 1 . 

(1.6) 

If q ( w- WH )/k > v, as is possible only when 
w > WH, the integration is carried out over the 
contour shown in Fig. la. Furthermore, it can 
be shown that if q « k, then Re Vz = ( w- WH )/ 
k cos a so that IRe Vz I » I Im Vz 1. When these 
considerations are taken into account, it is easy 
to compute the contribution in I0,1, 2 due to inte
gration around the singularity. Denoting the ap
propriate parts of the integrals by the symbol I, 
we have 

If, however, q ( w- WH )/k < v it must be assumed 
that I0 1 2 I = 0. 

We ~~~determine the contribution due to inte
gration along the real axis. For example, consider 
the integral 

/+- = v. m +r exp(-mv;I2><T~dv2 • 

oil :C.n><.T _:co - i (w- wH) + v + ikv2 cos a 
(1.8) 

Following the method of reference 5 for the analy
sis of such integrals, and substituting Vz =-../ 2KT;iny, 
we obtain 

-- +oo 
1+ =~ .. 1 .)!.!..__ \ dtw·y' l(z-y), (1.9) 
oil k cos a Jl 2nv.T j . 

where 

-00 

(w- wH) k + vq 
Re z = ---~==-

(kt + q2) V :C.xT I m cos a ' 

vk -q (w- wH) 
Im Z =c (1.10) 

(k2 + q2) V21tT 1m cos a · 

For weak absorption and I z I » 1, we have 

+oc v- ( 1 ., ) 
~ dy e-u• / (z- y) ~ + I + 2z' + 4~• + 0 0 0 

-00 

- rrie-z' sgn lm Zo (1.11) 

This formula is applicable only when IRe z I 
» I Im z 1. If this condition is not satisfied, the 
exponential term must be omitted (the remaining 
terms are not changed ) . When I z I « 1 we use 
the expansion 
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-'-oo 

·~ dye-Y' I (z- y) = v;z- rri sgn Im z. (1.12) 
-oo 

Using Eqs. (1.11) and (1.12) we can compute Ion 
in various cases. The integrals Iin and I2n 
can be expressed in terms of I0n: 

/~ 1 =~(I+ [i (w- Wff)- v] ldrr), 
1 tk cos il 

+ [i(mH-m)+v]m/ , . + 
l.II = - ~ J -;- [l (w- Wff)- v]lorr). (1.13) 

• '2-:rxT k• cos il 

We can now proceed with the absorption calcula
tion. We assume at the outset that collisions are 
relatively unimportant so that 

•1 ~VxTjmkcosa. (1.14) 

We consider first the frequency region close to 
WH, which lies outside the direct resonance re
gion; we call this the outer region. In this case 

(1.15) 

Assuming that q « k, we find from Eq. (1.10) that 
I z I » 1. Using Eqs. (1. 7), (1.11), and (1.13) we 
arrive at the customary expansion, which is applic
able both for Im z > 0 and Im z < 0: 
-'- 1 f.xT cos2 a r = - -- -....--;~--., 
" v+i(mH-m) m[v+i(mH-w)J" 

-'- xTk cos il 
h = -m[v+i(m11 -m)]" 

I+- 1 
2 -2n:[v+i(mH-m)] 

'. (m-mH)" (m \'!. ( m(m-mHF) 
~- · - I exp - 2 Tk2 2 • · V"' ks cos" a 2x T _. x ' cos a 

(1.16) 

Similar expansions obtain for I0 1 2 and Io 1 2· To , , , ' 
convert to the formulas for I0 1 2, we must put in 
Eq. (1.16) WH = 0; for 10,1, 2 "v:e must replace in 
Eq. (1.16) w- WH by w + WH· Since we are in
terested only in gyromagnetic absorption, expo
nential terms can be omitted from the last six 
integrals. Expansions of the type given in (1.16) 
for I0, 1, 2 and 10,1, 2 are used here throughout. 

Substituting expressions such as Eq. (1.16) for 
the I integrals in Eq. (1.3), we neglect absorption 
completely in the first approximation (we assume 
that v = 0 and omit the exponential terms). We 
thus arrive at the equation 
~evRn6 - (I- u- u + uu cos2 ex) n4 + [2 (I- v) 2 

+ uv (l + cos2 a)- 2u] n2 + (1- v) [u- (I- v)2 ] = 0, 
(1.17) 

which determines the square of the index of refrac
tion, n2 = c 2k2 / w2, for the extraordinary ( n2 = ni), 
ordinary (n2 =n~), andplasma (n2 =n~) waves. 
In Eq. (1.17) v = wij/w2, u = wi.r!w2, and {3 
= ../ KT/mc2 is the ratio of the mean thermal ve
locity to the velocity of light c. The general expression 
for R is given in references 1 and 6-8 (cf. also below). 
When {32 « 1, the root of Eq. (1.17) correspond-
ing to the plasma wave is 

2 _ 1 -- u - v + uv cos2 a _ 
11 ~ - ~2 vR -

1 - u - v + u:.~ cos2 a 
= ~"v<3 sin4o:/(1- 4u)+sin2 a cos2o:[ 1+(5-u)/( 1-u)2 ]+3(1- u)cos4a)· 

(1.18) 

According to Eq. (1.1), 11- u I f:::! 2 11 -v'll I f:::! 

2 I w- WH I/ WH « 1. For values of a which are 
not too close to a = 0 or a c: 1r/2, we have from 
Eq. (1.18) n~ f:::!- (1-u)2/4{32 cos2 a. Since n~ < 0, 
plasma waves cannot propagate when u f:::! 1. At 
small a (a « 11 - u l/v), this relation does not 
apply. We then have n~ f:::! ( 1 - v ) I 3{32v, corre
sponding to the isotropic case. Here it is clear 
that gyromagnetic resonance absorption is not im
portant. When a f:::! 1r/2, we have n~ = 1/{32• Al
though n~ > 0, wave 3 (plasma wave) does not 
propagate because one of the initial conditions 
(1.2) is violated and there should be appreciable 
absorption ( q "' k). For this reason there is no 
need to compute the absorption of plasma waves 
at w f:::! WH in detail. In this section we discuss 
therefore gyromagnetic resonance absorption of 
wave 1 and wave 2 only. 

Because plasma waves are neglected [we also 
neglect the transiton region between waves 3 and 
1 (or 3 and 2 )6- 8 ] we can neglect the {32vRn6 

term. Then, in the second approximation, when 
q ;.o 0, we obtain from (1.3), using (1.16) and 
similar expansions, 

q s 2 (v -1) n 4 + 2 (v2 - 4v + 2) n2 -- 3v2 + 6v- 2 

}! ='!.viii -:2 sin• an2 + 2 + sin2 a- 2v + 4 (1- Vu).(1- v) n2jv 

-'- v·--.; (1- fu)2 
I - --~--

2 vpn 8 cos ·'J. 

(vcos 2a- 1)n•+(-lj4 v" sin• a -2vcos2 a:+2)n2+(v -1)(1-V2/4) >< . . 
-2 sin2 !ln2 + 2 + sin 2 a- 2v + '' (1- V u) (1- v) n•;v 

(1.19) 

where s = v/w. In obtaining Eq. (1.19) we have 
discarded small terms [terms proportional to 
( 1 -Ill )2 and certain terms proportional to 
( 1-/U )]. We have used the first-approximation 
equation (1.17), where we put {32vRn6 = 0. We 
may note that it would not be correct to take 
u = 1 at the outset in this equation. It is obvious 
that the first term in Eq. (1.19) is due to colli-
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sions while the second derives from a specific 
absorption mechanism. It can easily be estab
lished that actually q « k under the restrictions 
given above. 

When a= 0, for wave 1 when n~ R:: 1-v/ 
( 1 - .fU ) , we have for the slow waves ( ni » 1 ) , 
from Eq. (1.19), 

q, _ s Vu -t-. l!i_ / _ (1- Vii)•"-. 
k -- ;qy u -1) + ~~~ V 8 exp "-. 2~•n• / • (1.20) 

This formula has been obtained by Shafranov9 for 
the case s = 0 and has been considered as a spe
cial case in I. From Eq. (1.15) we find that 
11-/U I » {3n cos a. If, however, we use Eq. 
(1.20) with s = 0 in the region where 11-/U I 
...... {3n, we find that q ...... k. Thus when I w - WH I 
...... -J KT/mk the absorption of wave 1 must be ap
preciable. The same holds at small values of a, 
except that there is appreciable absorption of 
wave 1 only when v < 1; when v > 1 it is wave 
2 that is strongly absorbed, rather than wave 1 
(this effect is considered in greater detail in I; 
the statement in I that at small values of a only 
wave 2 is absorbed for any value of v is in error). 
If however nt2 "' 1, as is the case for values of 
a which are not too small, then we obtain from 
Eq. (1.19), for 11-/U I ...... {3n cos a, a specific 
absorption q/k ...... {3, i.e., q « k. This estimate 
is in agreement with a calculation for the inner 
resonance region, which we now consider. 

In the inner region we assume that the following 
condition [the inverse of (1.15)] is satisfied: 

I w- WH I ~JixTfmkcos<X, (1.21) 

all other restrictions remaining the same as be
fore. Now we must use the expansion (1.13). As 
before, we again assume that the absorption is 
weak. This assumption will be violated only at 
small values of a (if a = 0 exactly, this is the 
case for wave 1 ), and also in the case of quasi
transverse propagation, i.e., when a R:: 1r/2. The 
first case can be considered by means of our gen
eral formulas. We shall not do this because when 
fU > 1, and n~ > 0 if thermal motion is neglected, 
our results agree with those obtained in reference 
9 where it is assumed that a = 0 exactly. The 
second case (a R:: 1r/2) cannot be analyzed cor
rectly in a nonrelativistic approximation. We 
may note, however, that according to Eq. (1.21) 

the inner regions, in which the absorption is large, 
become very narrow when cos a « 1. 

Because of the condition (1.14), we can neglect 
the effect of collisions since under the restrictions 
of Eq. (1.21) the calculation yields qspec "' f3k, 
while the collision contribution is qcoll "' sk, so 
that qspec » qcoll· Putting v = 0 and assuming 
that q « k, we obtain the following expressions 
for the integrals I0,1,2: 

I+ - 1 -. _r:;wi 
0 - kcosex V M' 

+ 1 + im (w- ooH) 
!,=-~--, I.=- ~ 

i kcos ex 210xTk2 cos2cx 
(1.22) 

After substitution of the above values in the dis
persion equation (1.3), we again obtain as a first 
approximation Eq. (1.17), where we may take {3 = 0 
and u = 1. In the next approximation, we obtain 
the following expression for the absorption factor q: 

qjk = Y2/1t (fj cosocjvn) (2v- 2- sin2 oc + 2 sin2 M 2f 1 

x {[l- {I -+sin2 cx) v] n•- [2+ v(+sin2 oc-f) 

+ tv• (2cos 2cx-tan2 <X)] +[I - f v + +v• (I -tan2 oc) 

+ + v3 tan 2 <X]}. (1.23) 

It follows from Eq. (1.23) that q/k ...... {3 when 
ni, 2 ...... 1. Equation (1.23) is similar to that ob
tained earlier by Sitenko and Stepanov.2 The dif
ference lies in the expression inside the curly 
brackets and is apparently due to the fact that the 
Ii2 terms have not been considered in reference 2 
[(cf. Eq. 1.3)]. We may note that our formula, as 
has already been indicated, does not apply when 
a R:: 1r I 2 (roughly, when cos a ~ {3 ) • The analo
gous formula in reference 2 does not contain a 
similar singularity, which appears at a- 1r/2 
or w R:: 2WH, 3wH, etc. in the inner resonance 
regions. 

Up to this point we have considered the propa
gation of waves of a given frequency w and have 
determined the spatial attenuation of the field. 
However, as was mentioned in the introduction, 
another formulation of the problem is possible: 
in this approach the wave number k is assumed 
known and the time-damping term e-yt is de
termined.10 Solving the problem in this second 
formulation, as has been done earlier by a number 
of authors2- 4•6•10 and assuming that the damping y 
is weak, we have in the inner resonance region 

r s 2 (v -1) n• +2 (v2 -4v + 2) n2 -3v2 + 6v-2 -.I-;- (1-- fu)2 

-;;;-=2 (v-1)n•+[2v•-(6+sin•cx)u+2]n2 +v(v-2)2 +(2v-1)(1-v)l+ V 2 Bncosex 

(v cos2cx -1) n• + (- 1/ 4 v2 sin2 ex- 2v cos2 ex+ 2) n2 + (v -1) (1- V2/4) ( (I ~~""-, )2f2R2 2 ., ) x . exp - - r u r n cos" oc . 
' (v- 1) n• + [2v2 - (6 + stn2 a) v + 2] n2 + v (v- 2)2 + (2v -1) (1- v) 

(1.24) 
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It is easy to show that q in Eq. (1.19) and y in 
Eq. (1.24) are related by the expression 

r =c qdcojd!?, (1.25) 

where dw/dk is the projection of the group veloc
ity in the direction of the vector k. The latter can 
be computed from Eq. (1.17) if we assume for waves 
1 and 2 that {32 -- 0. An expression similar to Eq. 
(1.24) has been obtained earlier by Stepanov.3 Our 
expression appears in somewhat different form. 
However, if we compare Eq. (1.24) with s = 0 with 
the analogous relation in reference 3, and take the 
transformations used here into account, there is a 
discrepancy in the denominators of the expressions 
which multiply the exponentials. We may note that 
there is also a discrepancy of this kind for the 
other gyromagnetic resonances (cf. below). 

When a= 0, we have from Eq. (1.24), for the 
slow wave 1 

1 =, v + J/~;2 [(I- }lu)",}n] exp <--(I -Vu)"i2[i2n2). 

This formulas has been given in I. 
A direct calculation of y for the inner reso

nance region leads to an equation which can be 
solved only by numerical methods. However, for 
not too small values of a, we may take for waves 
1 and 2 tentatively y/ w "' {3n, which corresponds 
to the estimate made on the basis of Eq. (1.24) for 
11- fU I "'{3n. It should be noted that Eq. (1.25) 
does not apply in this case. This formula is valid 
only for weak attenuation; however, the condition 
w » y, which is satisfied for the inner region 
when a is not small, is insufficient. The condi
tion y « .../ KT/mk must also be satisfied. The 
latter condition is not satisfied in the inner region 
when w ~ WH, since y "' {3nw = .../ KT/mk • 

Up to this point we have used the assumption 
given in Eq. (1.14). We now consider the inverse 
case, when 

(1.26) 

Turning now to Eq. (1.10), we obtain for the param
eter z, which appears in the integrals I0 ,~, 2 , (as
suming that q/k "' y/ "-l « 1), 

Re z c~ [(to- (tlH) k ,- vq]jk 2 V2zT/m cos Ct., 

Imz = v.k}l2xTjmcosCt.'~ I. 

In this case we may use an expansion such as (1.11), 
since I z I » 1. If we assume that I w- wH I « v, 
then I Im z I » IRe z I and, in general, the expo
nential terms, which take account of the specific 
absorption, do not appear. If I w- WH I » v, how
ever, although the ,..,e-Z2 term does not vanish, 
its contribution is negligibly small. Hence, the 

specific absorption can be neglected both for 
I w- wH I » v and I w- WH I « v. 

We thus conclude that if (1.26) is satisfied, the 
absorption of waves 1 and 2 in the region w ~ WH 
is determined exclusively by collisions. For the 
very simple approximation of the collision inte
gral we have used ( cf. I), there is no point at all 
in carrying out a kinetic analysis; we can limit 
ourselves to the formulas of the elementary the
ory, which does not take account of the thermal 
spread in the electron velocities. 11 

2. ABSORPTION IN FREQUENCY REGIONS 
CLOSE TO 2wH AND 3wH 

In this section we analyze absorption in frequency 
regions near w ~ 2wH and w ~ 3wH when the fol
lowing conditions are satisfied, respectively: 

[(w-2u>u)/w[ ~I, [ (t•>- 3ttJn) 1 w I< I. (2.1) 

To consider cases simultaneously we must sup
plement Eq. (1.8) of I with I0++ terms. As a result 
we start from the following equation: 

2::iuJW~ I 2r:; rt -; (t)g {lo ]~· (tt)2 - c2k2 sin 2 o:) 

-1 rri 2 (It+ I 0) [2cJJ 2 - c2k2 (I -r cos2 o:)J} 

- (iu>~/2(t>) (c2k2 - 1•> 2) {(c2k2 sin2 Ct.- 2t•l2) ut + r:;) 
+ 4r: (c2k2 cos 2 o:- ttl2) I 2 + oc2k2 (2;: cos2 o: It 

- sin2 o: It)}- (c2k2 - w2 ) 2 

< (I++ 1 ~ ·I++-f-) f 2 • 6I-I + o o -,- 8 u o ·1 T:lu)(Uo o 2 

- u>t ((c2k2 sin2 o:- w2) / 0 - ;: [c2k2 (I + cos2 o:)- 2w2]/2) 

+ (iw~j2w) (c2k2- t•> 2 ) (2u> 2 - c2k2 sin2 o:)} = 0. (2 .2) 

The integrals I0+ and I0++ in Eq. (2.2) can be 
computed by starting from the expression for I0 
in Eq. (1.4) and replacing WH by 2WH or WH 
by 3WH. 

Assuming that (1.5) is satisfied, we first con
sider the case (1.14) when the number of collisions 
is relatively small. In Eq. (2.2), for I0,1, 2 we use 
the approximations in (1.16); for I0, 1, 2 and Io,t, 2 

we use expansions similar to (1.16), omitting the 
exponential terms. The analysis of the resonance 
integrals 10+ (when w ~ 2wH) or 10++ (when 
w :~ 3wH) is carried out the same way as in Sec. 1 
(for Ii)). 

Considering the absorption of waves 1 and 2, 
and assuming that q « k we use, as before, a 
successive-approximation method. Neglecting 
absorption, we arrive at Eq. (1.17), in which we 
must assume that {32vRn6 = 0. In the next approxi
mation we obtain relations for the absorption fac
tor q. In this case, in contrast with the first gyro-
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magnetic resonance, the absorption in the inner 
and outer regions for w ~ 2wH (or w ~ 3wH) 
can be described by a single formula. 

Finally, for waves 1 and 2 we have 

q SA( 1) x-=2 U=t, 

_)_ 1 y-;- ~n sin• ct B ( 1 J / (1- 2 Vu)• ·) - - v --- u =- ex / -
' 2 8 cos ct 4, P ""- 2~2n2 cos• ct • 

(2.3) 

q s ( 1) k=lA U=g-

, 21 y-;- B3n8 sin• ct ( 1 ) / (1- 3 Vu)• '-- - -v B u =- exp ----.--'-----;;---''-- '-
' 16 8 cos :z H ''- ~B2n2 cos2 ct / · 

(2.4) 

For the functions A ( u) and B ( u) we have 

(2v -+- u- 3)n4 +(2v•- 8v- 2u-7-6)n2 - 3v2-!-6v+u- 3 
A (u) = n•[:! (1- u- v+ uv cos2 ct)n2 - 2(1 v)2-(1-i--cos• ct)uv+ 2uJ ' 

B (u) = (u- 1) 11 2n4sin2ct+{v[ 1/2 -!- 1 / 2 cos2ct+sin2ct/(1+VU})~ 
un2 2 (1 - u- v + uv cos• ct) n 2 

~ -(1+1 / 2 sin'ct)}n2+(1-v)[1-v/(1+YU}) 
-2 (1- v) 2 - (1 + cos• ct) uv + 2u (2.5) 

When w ~ 2wH, we take u = 1,14 in Eq. (2.5) and 
when w ~ 3wH we use u = %. 

It follows from Eqs. (2.3) and (2.4) that the 
change in the specific absorption with frequency, 
qspec• is determined in the region w = 2wH or 
w = 3wH by an exponential resonance factor. Under 
the conditions considered here, the absorption due 
to collisions is of non-resonant nature and the value 
of qcoll depends to a considerable extent on the 
quantity s = v/w. As a very rough maximum, we 
can take qspec ,..., {3 at w ~ 2wH and qspec ,..., (33 

at w ~ 3wH (for simplicity we assume that a ,..., 1). 
Because {32 = KT/mc2 is small, the value of qspec 
falls off rapidly as the number of the resonance in
creases. It can be shown that when w ~ 4wH, 
qspec ;S {3 5 and when w ~ 5wH, qspec ;S {3 1• Thus 
the largest specific absorption for waves 1 and 2 
obtains for w ~ WH and 2wH, in which case 
qspec ;S (3. If one speaks of specific absorption, 
Eqs. (2.3) and (2.4) are not meaningful in the inner 
resonance regions [ cf. the condition in Eq. (1.21), 
where we must replace WH by 2wH or 3wH] 
when a ~ 1r/2. This is approximately the case 
for the second gyromagnetic resonanee when 
cos a ;S {3 and for the third when cos a ;S (33• When 
cos a « 1, the inner resonance regions are very 
narrow. 

We now consider the absorption of the plasma 
wave (wave 3). For this wave n§ » 1 in all 
cases. We shall not dwell on the properties of 
these waves, but shall concentrate our attention 
on the question of absorption. In considering ab-

sorption, one must keep in mind the fact that these 
waves are damped if (3n,..., 1,2•6- 8 regardless of 
the gyromagnetic resonance mechanism. The at
tenuation is small when 

(1--u-;:•+uvcos~oci<:J. (2.6) 

At the same time, the quantity 11- u- v + uv cos2 a I 
must not be too small if we are to avoid the transi
tion region between waves 3 and waves 1 (or 2) .6- 8 

We shall not analyze absorption in the transition 
region. 

For wave 3, analysis of the resonance is more 
simple at w ~ 3WH than that at w ~ 2wH. This 
situation results from the fact that the term with 
10++ in Eq. (1.2) does not change the first-approxi
mation equations (1.17), unlike the terms with IQ +. 

For w ~ 3wH, the absorption for waves 3, as well 
as waves 1 and 2, can be given by a single formula. 
From Eq. (2.2), and Eq. (1.17) we have, when n§ » 1 
and q3 « k 

~ = ~c(u = _!___) 
k ~ \ !) 

+ 27-. ;--;- psnsv sin' ct D ( _ 1 _' , (1- 3 Vu) 2 
1 

16V 8 cos:x- '\U-!f)eXp\-2~2n2 cos2 a)' 
(2. 7) 

with 

C(u) = 
~;) ~ 2v -- u 

1 - u- v + uv cos2 :z ' 

D() __ (1--u)sin'cz __ 
u - 2u (1- rt- v + uv cos• ct) -

(2.8) 

If a is small, we must introduce certain correc
tions in the second relation of (2.8). When a« 1, 
however, because of the presence of the sin8 a 
factor, the absorption is relatively small. 

When w ~ 2wH, we again obtain a formula 
similar to Eq. (2.7); this formula applies only 
when I w- 2wH I » -./ KT/mk cos a (in the outer 
region): 

Cj]___!..c(· --~\ 
k - 2 _u - 1±) 

_)_-. /!i_ vB n sin2 a D (u = ~)ex)!_ (1=Lfu) 2 'j 
1 V S ~cos a ~ 1 l \ ~~ 2n2 eos2 a 1 •• 

'(2.9) 

As the frequency w = 2wH is approached (in 
the outer region), the absorption becomes appre
ciable (q3 ,..., k). We shall not give formulas for 
this case, but simply indicate the following point 
of interest. From Eq. (1.18), we have when 
W ~ 2WH 

n5={[ f (I -v) --{-vsin2 cx]/ 3[1~vsin'oc} (I- 4u). 

Whence it is apparent that n5 changes sign on 
going through u = %. Thus, the region of strong 
specific absorption is not isolated, but is contig-
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uous with the region in which n~ < 0 and propa
gation is forbidden. Under these conditions it be
comes more difficult to isolate the specific absorp
tion effect than in the cases when there are iso
lated, broad absorption lines (this is the case for 
waves 1 and 2 for large values of a, or waves 3 
at w ~ 3wH). 

We now consider the formulas for the damping 
factor y, limiting ourselves to waves 1 and 2. 
Solving the problem in the second formulation ( cf. 
Introduction and I) we have 
·: s r 1 \ 
-;;; = 2 F V' = -.,-) 

-1.. }/ ~ v,Bn sin2 ct ( 1) · (1- 2 Vuf) , G u =- exp I - 7,-,;n,.,--'-;;-~ 
8 2 cos a 4 \ 2,B2n2 cosz ct ' 

(2.10) 

., s ( ·J) ~ = 2 F u cc., \T 

~-. ~~ ~'7:'~ 3n" si~'_a_ G (u = J..) ex ( _ (1- 3 Vu) 2 }·, 

' V 8 16 cos ct . ~J P , :!.,B2n2 cos2 a ' 
(2.11) 

where 
F (u) = (2v + u- 3) n• + (2v 0 - Sv- 2u .;. 6) n' _,. 

(2- v- u)n•- (2 (1- v)~ + uv (1 + cos2 ct) 

- 3v2 + 6v + u - 3 
--+ --4 (a+v-1)>n" -(v -- 2)[(1- v) 2 - u)- (1- v)(u + :.Ov- 2) • 

(2.12) 

G (u) _ (1- uW/z n• sin2 a+ (v[liz -i 1/ 2 cos2 a + sin2ct/(1+Vu)J 
- u {(2- v-u) n•- (2(1-v)•+ uv (1 + cos2ct) 

- (1 + 1/zsin2 ct)) n2 + (1- v) [1- v/(1 + Vu)j) 
__,. -4 (u + v -1))n2-(v- :!.)[(1- v) 2 -u]-(1- v)(u + 2v- 2)} 

(2.13) 

Equation (2.10), which reflects in part the con
tribution of a specific damping mechanism, applies 
only in the outer region; on the other hand, Eq. 
(2.11) can be applied to both the outer and inner 
resonance regions when w ~ 3wH. In this connec
tion, we note that Eq. (1.25) does not apply for the 
inner resonance region when w ~ 2wH. Thus, the 
last relation is violated for the inner resonance 
region when w ~ WH and w ~ 2wH. It does apply 
to all other cases considered here (for v « w). 

A comparison of Eqs. (2.10) and (2.11) (with 
s = 0 ) with the analogous relations from reference 
3 indicates a discrepancy, due to the differences 
between the denominators in Eq. (2.13) and the cor
responding formula of reference 3. 

In concluding this section, we note that if the in
equality (1.26) is satisfied, the absorption of waves 
1 and 2 is determined by collisions exclusively, as 
in Sec. 1. If the collision frequency v is assumed 
given, the absorption calculation can be carried 
out in the framework of the elementary theory .11 

A similar conclusion applies to the gyromagnetic 

resonance absorption of waves 3. However, be
cause the latter waves are slow (n~ » 1 ), in
equality (1.26) is satisfied only at relatively high 
values of the collision frequency v. In passing we 
also note that in the case of wave 3 and in the trans
sition region collisions may affect absorption and 
propagation even when w » v .12 

3. EXAMPLES AND ESTIMATES 

In this section we discuss the results obtained, 
using certain estimates and numerical examples. 
We use the relations derived in Sees. 1 and 2, as 
well as the results obtained in I, in which the non
resonance absorption of waves in a plasma is con
sidered. 

In comparing absorption due to collisions and 
due to specific damping mechanisms, in accord
ance with Eqs. (1.14) and (1.26), we must compare 
v and the quantity ..J K T /mk cos a = w{3 n cos a. 
Typical values of v and {3 for different condi
tions are given in the table. The table is in no 
way complete nor highly accurate, but is given 
merely for purposes of illustration. A high
temperature, completely ionized plasma13 which 
is the best approximation to the example in the 
table is the plasma in the solar corona. 

I v, se~-· I 

Solar corona 10-10-3 10-2 
Solar chromosphere 103 2-4·10-3 

Ionosphere 
E layer 105 2,5·10-4 
F layer 103-104 4-6·10-4 

Plasma in a gas-
discharge tube 

109-1010 1-2·10-3 

For non-resonance absorption associated with 
the Cerenkov losses in the plasma, 9 damping due 
to the specific absorption mechanism is important 
only for relatively slow waves. When {3ncos a« 1 
the smallness of this absorption is determined by 
the factor exp { -1/2[32n2 cos2 a}; however, if 
{3n ~ 1, the absorption can be noticeable. When 
{3n "' 1 the phase velocity Vph = c/n is of the 
same order of magnitude as the thermal velocity 
of the electrons, Vt = ..J KT/m . If the inequality 
{3n « 1 is well satisfied, the specific non-reso
nance absorption is insignificant. For plasma 
waves which do not satisfy (2.6), specific absorp
tion becomes significant so that q3 ~ k ( y3 ~ w). 
The strong absorption found when [3n3 "' 1 can be 
seen from Eqs. (2.12) and (2.14) of I, in spite of 
the fact that here we are somewhat outside the 
range of applicability of these equations. If the 
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condition {3n3 « 1 is well satisfied, the non-reso
nance specific absorption is vanishingly small and 
is unimportant compared with absorption due to 
collisions. As is clear from the above, the inverse 
is true only when {3n3 ~ 1 and w » v. 

In contrast with plasma waves, the slow low
frequency ordinary waves ( cf. I) are not strongly 
absorbed even when {3n2 cos a ~ 1. Thus, from 
Eq. (2.18) of I it follows that q2,spec/k :S wlwH 
x cos a. At the same time, in accordance with 
Eq. (2.15) of I, WHCOS a » W, SO that q2,spec /k 
« 1. It is apparent that the specific absorption ob
tains also when WH cos a ~ w. To carry out an 
exact calculation of the absorption here, it would 
be necessary to extend the analysis of the particu
lar case given in I. At the same time, as we have 
indicated, it is possible to have a case in which 
q2 /k « 1 over an appreciable frequency range, 
but in which the absorption is not a vanishingly 
small quantity. In the propagation of low-frequency 
noise in the upper atmosphere (atmospheric 
whistlers), which are believed to be groups of 
type-2 waves, as a rule wHcos a» w. At the 
same time, in the passage of an atmospheric at 
great heights above the earth, it is also possible 
to have wH cos a ~ w. In this case the frequen
cies f = w/27r ~ 104 in the spectrum of the atmos
pheric approach the high-frequency limit (fre
quencies exceeding this limit are blocked in the 
ionosphere). A noticeable contribution due to the 
specific absorption can be expected only when 
{3n2 ~ 1. This condition can hardly be realized in 
the upper atmosphere under non-turbulent condi
tions. However, the situation may change if there 
are strong corpuscular perturbations. A calcula
tion of the specific absorption under such condi
tions can be found in a paper by the author. 14 

We now return to the gyromagnetic resonance 
absorption and consider the absorption of waves 1 
and 2. For these waves, (if we neglect propaga
tion at angles close to a = 0 and a = 1r /2) the 
following rough approximations hold: qspec :S f3k 
for w ~ WH and 2wH, and qspec ;S {33k for 
w ~ 3wH. The effect of collisions is roughly de
termined by q00ll ~ sk = kv/w. To compare the 
contributions of the different absorption mechan
isms it is necessary to estimate the ratios r 1 2 

= {3w/v and r 3 = {33w/v. If we are interested in 
radio waves ( w ~ 106 -1010 ), r 3 « 1 for all the 
cases indicated in the table, except the solar 
corona. 

It is clear even from this estimate that the 
greatest specific absorption can occur when waves 
propagate in a hot, highly ionized plasma such as 
the solar corona. Thus, under the conditions which 
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FIG. 2. Curves characterizing the specific absorption of 

wave 1 (solid curve) and wave 2 (dashed curve) as a function 
of the parameter v ~ w~/ w2 for w ~ wH and a ~ 45°. 

obtain in the solar corona, in contrast with the 
other examples, it is quite possible to have a case 
in which r 3 » 1 and moreover r 4 = {3 5w/v ~ 1. 
The ratio r 1 2 can be large under the conditions 
found in the chromosphere. In the ionosphere 
[excluding very high frequencies, when the iono
sphere has no noticeable effect on the propagation 
( w < 108 )] we find that the condition r 1, 2 ~ 1 can 
be realized only at the level of the maximum of 
the F -layer or higher. Collisions are always 
predominant in absorption of radio waves in the 
lower ionospheric layers. 

It should be emphasized that the estimates 
given above are extremely coarse. It is possible 
that an exact calculation with the formula given in 
Sees. 1 and 2 would show great differences in the 
values of the absorption factors. This statement 
can be illustrated by curves such as those shown 
in Figs. 2 and 3. In Fig. 2 we show the curves 
q1 /k{3 and q2 /kf3 (in different scales ) , which 
characterize the specific absorption of wave 1 
and wave 2, on the basis of Eq. (1.23), for the 
inner resonance region w ~ WH at a= 45°. For 
a given value of a, the absorption given by the 
curves in Fig. 2 represents the maximum or at 
least the order of magnitude of the maximum. 
The shape of the specific absorption line close to 
w = wH has not been obtained, but the width of 
this line is of order .t..w ~ w{3n cos a. 

In Fig. 3 we show similar curves for wave 1 
and wave 2, also when a = 45° but with w = 2wH· 
The shape of the absorption line close to w = 2wn 
is given by the factor 

and it is apparent that the curves in Fig. 3 deter
mine the maximum absorption values. It follows 
from Figs. 2 and 3 that the absorption of wave 1 
differs greatly from that of wave 2 under the same 
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FIG. 3. Curves characterizing the specific absorption of 
wave 1 (solid curve) and wave 2 (dashed curve) as a function 
of the parameter v = cu~/ cu2 for cu = 2cuH and 0: = 45°. 

conditions; this is why different scales must be 
used. The absorption of a given wave in a plasma 
at its wavelength A (q/k = 27TqA = 27TqA0 /n) changes 
considerably as the parameter v is changed. 

The differences indicated above in the values 
of the absorption factors again emphasize the need 
for exact calculations. 

We note in connection with Figs. 2 and 3 that 
the curves corresponding to different character
istic waves lack those sections where n2 < 0 and 
propagation is forbidden (in Fig. 2 this is the case, 
for example, for wave 2 at v > 1 ). The relatively 
high values of absorption in Fig. 2 are due to the 
fact that n1 - 0 and n2 - 0 as v- 0 and v -1, 
respectively (we determine the absorbtion per wave
length in the medium, A = Ao /n). If, however, we 
relate the absorption coefficient to the wave num
ber in free space, k0 = 27T/A0, the increase in the 
values of q/koJ3 is not so great. In Fig. 3 the in
crease in q/k,B close to v = % arises because 
at this value n~ - oo. Actually, it is necessary to 
take account of the effect of thermal motion on 
propagation in the region v ~ %. In this case 
plasma waves exist in the region v < %. In this 

region the gyromagnetic absorption must be ana
lyzed by means of Eq. (2. 9) ( cf. also the remarks 
following this formula). 

The author is indebted to Professor V. L. 
Ginzburg for his continued interest in this work. 
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