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The energy losses .of an arbitrary moving particle are calculated by means of the macro
scopic Maxwell equations. A separation into ionization losses and radiation losses is made, 
outside the framework of perturbation theory. Effects on the formulas for ionization losses 
owing to multiple Coulomb scattering are examined, and also effects of the finiteness of the 
path length. It is found that because of the existence of the density effect the influence of 
multiple Coulomb scattering on this part of the losses can be neglected. 

1. INTRODUCTION 

IN this paper we study the limits of applicability 
of the theory of energy losses by excitation, ioniza
tion, and Cerenkov radiation at ultrahigh energies 
(hereafter for brevity we shall call these losses 
ionization losses ) . As will be shown below, for 
ionization lossas, just as for radiation losses, 1 

large longitudinal distances which increase with 
the energy of the particle are effective in a colli
sion with an individual atom. This can be intui
tively understood from the fact that the "collision 
times" .6.t1 ::::::: ( p/v )( 1 - v2 I c2 ) 1/ 2 ( p is the impact 
parameter) correspond to large "passage times," 
during which the field of the particle is formed. 
From the relation 

we at once get the required connection 

teff;:;;:;pfcYl-v~;c~ for i 1 =0·, D.teff =f1tl1(1-v,ic). 

Thus the field of the particle at the atom ( t 1 = 0) 
during the time .6.t1 is determined by large pas
sage-time intervals .6.teff at large distances 
vteff from the atom. 

If tl.e effective distances become sufficiently 
large, various external causes can disturb the 
path of the charge, and this leads to a change in 
the theory of ionization losses. We shall consider 
the influences of three effects: multiple scattering, 
polarization of the medium, and finiteness of the 
trajectory. Inclusion of these effects in the radia
tion losses2- 4 has led to a sharp change of the for
mulas for bremsstrahlung and pair production. As 
regards the inclusion of the polarization of the me
dium in the calculation of ionization losses, its ef
fect reduces to the well known density effect of 

Fermi and the Cerenkov radiation. Therefore the 
main part of this paper (Sec. 2 and 3) will be de
voted to a study of the influence of multiple elastic 
scattering on the ionization losses. 

For a qualitative estimate of this effect we con
sider the field produced by an arbitrarily moving 
charge. The Fourier components of the potentials 
are easily found from the Maxwell equations (cf. 
Sec. 2). For example, the vector potential is given 
by the expression 

A (k w) =- _e- (s ~- k2)-l \ e-ikr(IJ+iwt v (t) dt 
' 4r: 3c c2 j · ' 

A (r, t) = ~A (k, (•)) eikr-iwt dk dw. 

If, starting from these expressions, we now calcu
late the flux of pseudoquanta, multiply it by the ab
sorption coefficient of photons and integrate over 
dk and dw, we get an expression for the energy 
loss of an arbitrarily moving particle. The effect 
on the losses of deviations from rectilinear motion 
is determined by an integral of the form 

in estimating which it is convenient to integrate 
over the direction of the vector k. 

If we forgo the scattering, then I r1 - r 2 I 
= v ( t 1 - t 2 ), w = kz v, and the effective times will 
be of the order teff "' ( w ± kv) - 1• Since k 
= (K 2 + w2/v2 )112, for K « w/v we have 

(1) 

(we are using t ,..., ( w - kv) - 1, omitting the terms 
with w + kv). 

Let us now estimate the effect of the scattering. 
In this case2•3 
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and in the exponent there is the additional quantity 

kt:.r = kv 2t 2E!j£2L = wvt2E;j2£2L (2) 

( E is the energy of the electron, Es is a constant 
of the order of 21 Mev, and L is the shower length). 
This quantity becomes comparable with the main 
term in the exponent, ( kv - w) t, for a time t 1 

that can be determined from the relation 

(kv -w) t 1 =wvtiE~f2£2L. (3) 

Consequently, if t 1 < teff• then for momentum 
transfers in the direction perpendicular to the 
motion that satisfy 

xi~((•£sfEv1)Vw;Lv (4) 

the scattering must be taken into account. 
It is well known that there is a logarithmic con

tribution to the ionization loss from all values of 
the impact parameter (a quantity inversely pro
portional to K ) from minimum values to maximum 
values 

~ -I- I Vl 2/ 9 Pmax ....._, X mill ~ v (r) at - v c- (5) 

( Wat is a quantity of the order of atomic frequen
cies). 

Comparing Eqs. (4) and (5), we see that the in
fluence of scattering begins to be appreciable for 
the calculation of ionization loss if 

that is, beginning at energies 

Erfmc2 ~ (LuJatfv)'h mc2JE 5 • (6) 

The situation is much changed, however, if we take 
into account the effect of the density of the medium. 
It will become clear from what follows that the den
sity effect cuts off the effective range of K at a 
value 

(7) 

(N is the density of particles in the medium). Com
paring with Eq. (5), we find that the density effect 
becomes appreciable for 

(8) 

that is, at smaller energies, and therefore the con
tribution to the ionization loss from the impact pa
rameters at which the multiple scattering has a 
large effect is practically unimportant. 

In the present paper we also consider the effect 
of the finiteness of the path on the ionization loss. 
Since lengths of the order of 

(9) 

are effective for the ionization, the ionization curve 

must be changed if the length c T of the path is 
comparable with cteff· This condition sets in when 

(10) 

If the density effect is important at a given en
ergy, we must substitute in Eq. (9) the value of K 

from Eq. (7). Then we get 

(11) 

In this case the finiteness of the path length will 
affect the ionization loss if 

(12) 

The effect of the finiteness of the path on the 
Cerenkov radiation was first considered by Tamm. 5 

2. THE TOTAL ENERGY LOSS 

We shall calculate the energy loss by using the 
macroscopic Maxwell equations ( p, = 1 ) : 

2 e a2A 4, 
V A--- = -- evo (r - r (t)) c2 at• c , 

2 e a2(!J 47t v ro- --· =- -eo(r- r(t)). (13) 
T Cz at• S 

The solution for the potentials and the Lorentz con
dition are 

+co 
A (k w) = _e_ [k2 - 002 s(w)j'-1 \ v (f) ei"'t-ikr(t) dt 

' 47:3C c2 J ' 
-co 

+co 
0 (k uJ) = 'e [k2- w• 8 (w)]-1 r ef"'l-ikr(l) dt 
• ' 47t·'s (co) c2 .\ ' 

-oo 
+oo 
~ (kv (t) _ (u) ei"'t-ikr(t>dt = 0. (14) 

-00 

The energy loss is given by the work done 
against the retarding force acting on the particle, 
according to the formula 

+co 
F=-e ~ E(r,t)v(t)dt, (15) 

-oo 

where E ( r, t) is the electric field produced by 
the particle moving along the path r ( t) with the 
velocity v ( t). The Fourier component of the field 
is given by the relation 

E (k,w) = (iwfc) A (k,(u) - ikcp (k,w). (16) 

Using these expressions, we easily get the for
mula that is the basis of our further calculations: 

+co 
F ie2 ~ dkwdw {! ~ v .k (I) . 1 d 12 =- -. .--,--., I -e' r _,"' t 

1,;:" , k--w-a(w)tc- 1 • c 
-co 

_ ~ I \' eikr(t)-i"'t dt I2L . 
e .l I J (17) 

Regarding the limits of applicability of this for-
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mula we must make the following remarks. The 
ener~ hw transferred to the medium must be 
much smaller than the energy of the electron, 
since r ( t) is a prescribed trajectory, and recoil 
cannot be taken into account by such a method. In 
particular, since, as we shall see later on, Eq. (17) 
contains the loss to bremsstrahlung, the energy of 
the emitted quanta must be much smaller than that 
of the electron. For r (t) we must substitute the 
classical trajectory determined by the scattering 
by the Coulomb centers of force. Since, however, 
Ze2 /he < 1, the concept of a classical trajectory 
is not valid, and the classical connection between 
the impact parameter and the angle of deviation 
does not exist. Actually this does not affect the 
result, because the procedure for obtaining the 
final result reduces to an averaging of the expres
sion (17) over all possible trajectories, i.e., over 
all possible deviations from a straight path. Natu
rally, the averaging depends on the laws of mul
tiple scattering, which are the same for the clas
sical cases in virtue of the accidental circumstance 
that the Rutherford formula is always valid. Thus 
on this point the quantum nature of the phenomena 
is unimportant. Finally, we are using macroscopic 
electrodynamics. This means that the effective 

lengths must exceed interatomic distances, or in 
terms of momentum transfers this means that K 

« h/Rat. where Rat is of the order of interatomic 
distances, and K is the component of the vector k 
perpendicular to the direction of motion. This re
striction must be made if we do not introduce ex
plicitly the dependence of E on the vector k 
(spatial dispersion), i.e., if we use the usual ex
pression E ( w) which is legitimate in macroscopic 
electrodynamics. 

For large values of K we come to collisions 
with individual particles, so that a quantum calcu
lation is necessary and we have to join it on to the 
formulas valid for small K in a suitable way. On 
this point our calculations do not differ from the 
usual ones. 

Finally, we shall make one more remark re
garding the passage of Eq. (17) into an analogous 
formula when there is only one atom and we can 
neglect the effect of the medium. Here it is helpful 
to think of the loss as a quantity proportional to the 
imaginary part of E ( w ), i.e., to the absorption co
efficient. To get this result we replace the integra
tion over w between infinite limits by an integra
tion from zero to infinity; using the property6 of 
the dielectric constant, E (- w) = E* ( w ), we get 

+oo oo 
F =-~ (' dk \' dro (e- e*) (I) {I\' _v_ eikr(t)-iwt dt 12 ~ + k'- ro• (e + e*)/c'l (' eikr(t)-iwt dt \2}. 

1 47t3 J J I k2 -ro2efc2 12 J c I c2 I e [2 J . 
(18) 

-oo o 

The absorption coefficient is defined by the for
mula 

Na(w) = hu(s-s*)j2c. 

Here u ( w) is the cross section for absorption of 
a quantum of frequency w by an individual atom. 
Formula (18) can easily be obtained in a different 
way. We must calculate the flux of pseudoquanta 
from the moving particle, multiply it by the absorp
tion coefficient, and integrate over all k and all w. 
This makes clear how to make the passage to the 
case of collision with a single atom. To do this we 
must set E = 1 wherever it occurs in Eq. (18), ex
cept in the absorption coefficient. Then we are 
neglecting the influence of the density effect, and 
for a given motion r ( t) we get as the formula 
for the loss: 

00 

Fo = - ie' \ dk \ (e_:- e• l, (I)~~ r ( k~- 2W.2) I \ eikr(l)-iwt dt 12 

- ,,,.a ~ ~ (k-- ro·wJ- l\ c- : ~ 
0 

(1)2 I\ v (I) 1•>1 + ----:> _ eikr(t)-i<>l dt ~-J .. 
c· 1 ~ c 

(19) 

Let us now turn to the problem of separating out 
from the formula (17) the losses by ionization and 
bremsstralung. We first intergrate Eq. (17) 

over the direction of k relative to r ( t 1 ) - r ( t2 ). 

Then we get 
F __ ie2 \ k2dkrodro 

- ;-;2 ~ k 2 - ro•e (ro)/c2 

[t( ( v,v2 _ ..!..) -iw(t,-t,) sink I r,- rzl dt dt J 
X .\.) c~ e e k [r, _ r 2 1 1 2 • (20) 

-oo 

We shall assume the deviations from rectilinearity 
small and expand Eq. (20) in terms of these devia
tions. It must be noted that although the deviations 
are small the trigonometric functions can oscillate 
strongly, so that in general they cannot be expanded. 
If we denote the small deviations from rectilinearity 
by b.r and b. v 

~r=r2 -r1 -v(t2 -v1), ~V=V2-V1, V=V1=const 

and introduce t 1 - t 2 = t and t 1 as variables of 
integration, then since all the quantities in the in
tegrand depend only on the difference of the times 
and the integral over t 1 gives the total time of 
passage, we shall have for the energy loss in unit 
time +oo 

F' = - ~: ~~ k 2 :_·~~:~:)rc• { ~ ( ~: - ~ 
-00 

+ v1 tl.v) ~in (kvt + Mr) dtl 
c" kvt + ktl.r J · 

(21) 
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We further average the expression (21) over all 
possible paths. We use the formulas of multiple 
scattering 

vt.v =- 62v2/2 =- E~v31tlj2£2L, 
t t 

(rl- r2) 2- v2 (t1 - t2)2 = - v2t ~ B~d-r + v2 (~ 6T d-r t 
0 0 

(22) 

Substituting Eq. (22) in Eq. (21), we get ( F' = F 1 

= F2) 

F = _ 2ie2 (\ kdkwdw (~ _ i.) 
1 "'vjjk2-w2e(w)fc2 c2 s 

r . ( kv2t2E;) dt 
X ~ cos w t · sm kvt- 12E•L t, 

0 

F _ 2ie2 (' \' kdkwdw [( v' 1 ) v E; v3 E; ] 
2 -- n2v .\Jk2-w2s(w)jc2 c' --; 1L.£2L- L.c2£2L 

00 kv2t2E 2 

X ~ cos wt sin ( kvt- i'2£2Ls ) dt. (23) 
0 

The lack of exactness of the expressions is due 
to the use of the simple averaging procedure used 
by Landau and Pomeranchuk, 2 which reduces to 
the replacement of averages of products of func
tions by products of functions of the averaged ar
guments. For the first term, F 1, the lack of ex
actness is due only to the fact that the average 
value of the sine is replaced by the sine of the av
erage value. In what follows we shall be interested 
in only the first term of the expansion. If in the 
argument of the sine we neglect the term propor
tional to E~ we arrive at the usual expression 
for the ionization loss in distant collisions of a 
particle with uniform rectilinear motion (cf. Sec. 3). 

For relativistic particles and for hw » hwat 
the second term in the expansion as given by Eq. 
(23) differs from the formula for bremsstrahlung2•3 

with inclusion of effects of multiple scattering and 
ionization of the medium only in its coefficient. This 
can be shown in the following way. For large energy 
transfers hw » hwat, the absorption coefficient 
falls off sharply. This means that the medium be
comes transparent, and in the integration over w 
we can assume that E has an infintely small imag
inary part (we emphasize that for this approxima
tion it is necessary that the thickness of the target 
be smaller than the length in which a quantum is 
absorbed). We now carry out the integration over 
the variable k in the expression (23), using the re
lation6 
+oo kmax 
\ d \ wk2dkA (w, k) 

In the derivation of this equation we have used the 
fact that E1 is an even function and E2 - 0 is an 
odd function of w. The function A ( w, k) is an 
arbitrary even function of its arguments. Substi
tuting the result (24) in the expression for F2, we 
finally arrive at the formula for the bremsstrah
lung 

£2 e• oo ':" ( kv•t•Ez ) 
F2 =- ~ r.L ~ dw ~ cos wt sin kvt- 12£ 2{ dt, 

0 0 

(25) 

where k = wE112/c. 
The formula (25) differs by a factor 3 from the 

analogous formula obtained in references 2 and 3 
by the same method of calculation. The starting 
expression used in those papers differs from Eq. 
(17) by the presence of a factor k ·vI w in the in
tegrand of the second term in the curly brackets 
in Eq. (17). Using the Lorentz condition (15), how
ever, one can easily verify the equivalence of the 
two expressions (in this case it is a matter of the 
emission of quanta larger than atomic energies, 
so that one must use Eq. (24) and the procedure 
of integration described above). The reason for 
the lack of agreement of the coefficients is that 
in references 2 and 3 terms were dropped which 
after an integration by parts make contributions 
to the integral (17) that are of the same order as 
the main terms. 

Finally, let us examine the limits of applicabil
ity of the expansion (23), and also the connection 
between the distant and close collisions. As we 
have already pointed out, the expansion is in terms 
of the deviations from rectilinear motion, which 
are always small (we note that in such an expan
sion the degree of the terms in the integrand with 
respect to t increases, but the integration over t 
always extends effectively to teff• so that the ex
pansion remains valid). Nevertheless we know 
that the radiation energy loss of a relativistic elec
tron is larger than the loss by ionization. This is 
so owing to the presence of the factor v2/c2 - 1/E 
in F 1 [ Eq. (23)], i.e., an accidental circumstance 
which sharply decreases the loss at frequencies 
higher than atomic frequencies. Thus when the 
energy loss occurs in large portions the main con
tribution to the loss in the expression (23) is given 
by the second term. This is easy to show. In fact, 
the second term gives the energy loss in the emis
sion of quanta of energies smaller than hw (the 
effect of the medium does not change the estimate): 

Fz = 4vr~Z2N Lradhw /137, 
.\ w ~ k'- (w2 f c2) e1 (w)- (iw2 ; c2 ) Ez (w) 

-00 (, 

00 

= ~ nicw' Y~A ( w, ~ Vs) dw. 

whereas the first term (we integrate it over all 
energy transfers, noting that the main contribution 

(24) comes from atomic energies) gives 
0 
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F 1 = 2rrvZe4 N L;on / mv2• 

A crude comparison of these two expressions 
shows that for large losses hw the second term 
is in fact more important than the first, and it 
would seem that to get a knowledge of F 1 we would 
need to use an exact method of averaging, so as to 
confirm that the small terms dropped from F 2 do 
not change the expression for F 1• The situation is 
much better than this, however, because hereafter 
we shall use the expression F 1 only for small en
ergy transfers, of the order of atomic energies. 
For large energy transfers in the ionization loss 
we must use the formulas for free collisions. Ac
cording to the calculations of Bethe, 7 already at 
energy transfers of the order of 5me4/h2 the 
main contribution to the ionization loss in hydro
gen comes from free collisions. It is clear that 
for such values of hw the effect of F 2 is quite 
unimportant. 

Thus in the range of energy transfers in which 
we are interested our approximation consists of 
the replacement of the average value of the sine 
by the sine of the average value, which leads to 
logarithmic accuracy, as we shall see below. 

3. INVESTIGATION OF F1 

Let us rewrite F 1 in the form 

00 00 

2ie• \ (' wk ( e- e•) [ w• I v• 12 
F 1 = - ~ j dw J dk I kZ- w2ejcz lz I • J2 V2 cz e - I 

0 0 

w2 , o c;;" • ' kv2t2 E~ ) dt ----v::, k·] ~ sm(kvt- iLL £2 coswt 1 (26) 
0 

and consider the integral over t: 

, 1 f . [ , . kv•tz E~ J dt I= I 1 , I 2 = :z- j sm (w 1 kv) t- 12L £.2 1 
0 

1 C . [ kv 2f 2 E; J dt +zl sm (kv-w)t- 12LE"- -~-· (27) 
0 

In the first integral It the effective range of inte
gration is t ~ 1/ ( w + kv). It is easy to show that 
the second term in the argument of the sine is al
ways smaller than unity for all values of the vari
able of integration that are important for the inte
gral It. That is, in It we can always neglect the 
term with the scattering and integrate over t. We 
then find that It = 7!/4 for all positive values of 
w + kv. 

Let us now consider I2• In the range 

(28) 

of the variables the term with the scattering can 
be neglected, and we have I2 = 1r/ 4 if w < kv, and 
I2 = -1r/ 4 if w > kv. Since it can be seen from the 
condition (28) that the scattering is important only 
when I kv- w 1/kv « 1, we can assume that w ::::: kv. 
Outside the range (28), on the other hand, we can 
neglect the first term and get 

co co 

I 1 (' sin. ~z d~ _ 1 (' sin x d __ ::_ (29) 
2=-zj~ •--4j_x_ X- 8' 

0 0 

Let us rewrite Ft in the following form: 

Here we have introduced instead of k the variable 
K2 = k2 - w2 /v2, which in the case of rectilinear mo
tion is a quantity inversely proportional to the 
square of the impact parameter. In calculating the 
integral (30) we neglect the density effect. As we 
already know, to do this we must introduce the ab
sorption coefficient, according to Eq. (19), and set 
E = 1 in the other parts of Eq. (30). After inte
grating over K we get 

Y.~ + w2 (1- v2jc2)jv2 

Y.i + wz (1- vz;cz);vz 

l<~zax v• ' _-,-:w:_•--'-(.:_1_-_:o:_2:::_fc__,_z)~/c_z-
+In ---. 

x~ + wz (1- v2jc2);v• c2 1<~ + w2 (1- v2jc2)jv2 

(31) 

To reduce the integral to final form we use the 
well known properties of the absorption coefficient:6 

co 

\ we" (w) dw = 2;r.2Ne2Z/m, 
0 

co 

In ZJ = .,_,Nm 2 ./ I we" (uJ) In(•Jd(u. 
.::...·~ e u J 

0 

(32) 

(33) 

At first we neglect the term associated with the 
scattering. This is legitimate if the inequality 
opposite to the inequality (6) is satisfied. The 
formula (31) takes the form 

If the inequality (6) holds, the formula for the loss 
takes a different form: 

X= J. (35) 
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We shall now show that this case never occurs. 
The reason for this is the density effect, which we 
have temporarily neglected. If, on the other hand, 
we neglect the effect of the scattering, the total 
loss (in this case including also the loss by Ceren
kov radiation) will be given by the formula of 
Fermi 

(36) 

Comparing Eqs. (34) and (36), we note that the den
sity effect begins to be appreciable when the condi
tion (8) holds. A comparison of the conditions (6) 
and (8) shows that the density effect is always im
portant at lower energies ( E2 « Ed. This means 
that when the energy is further increased (for E 
> E2 ) the contribution to the ionization comes from 
the same impact parameters as for E < E2 « E1, 

at which the scattering still has no effect. 
We can also examine the question of the influ

ence of the scattering on the large-quantum energy 
loss. If h » hwat• we can use the limiting value 
for the dielectric constant 

c: =I-- 4;;:1\'Ze~ I mw~. (37) 

It is easy to see that the factor 47rNZe2/mc2 ap
pears in the argument of the logarithm in Eq. (31). 
As can be verified without difficulty, the frequency 
range in which the scattering is of importance is 
given by 

(4rtNZe0 )'f, ( E )'.'• vL'I•mc2 _ ~ ( Es ) 2 v£2 E 
-- - ---~(•)'--S._ - --~--

mc2 me" 1 £ 5 ~ ~ mc2 Lm2c4 ~ h 

(38) 
and occurs at energies 

E I me"> (4;;:/V Ze" I m)'1' (me" I E,f L I c. (39) 

A comparison of Eqs. (38) and (39) with the analo
gous conditions in the formulas for the bremsstrah
lung3 shows that they are just the same. Further
more, if the condition (38) is satisfied a pole appears 
in the integration of Eq. (30), and passage around 
this pole also leads to an additional contribution to 
the loss. 

As we already noted above, however, these re
sults do not change our conclusions about the total 
energy loss, because for large energy transfers 
the absorption coefficient is so small that the con
tribution to the loss calculated from Eq. (30) (with
out integration over w ) can be neglected in com
parison with the contribution from free collisions 
(for energies that satisfy Eq. (39), Eq. (38) shows 
that the lower limit of the frequencies considerably 
exceeds atomic frequencies). Furthermore, the 
pole that appears in the first integral of Eq. (30) 
leads to a contribution to the emission of hard 

quanta satisfying the condition (38); but the inten
sity of the radiation is much smaller than that 
given by the term F2• The latter term has been 
calculated inexactly because of the approximate 
method of averaging. Thus also for large energy 
transfers, although Eq. (30) is indeed changed, the 
contribution of F 1 to the large energy transfers 
can be neglected in comparison with the other 
losses. 

4. INFLUENCE ON THE LOSSES OF THE EFFECT 
OF FINITENESS OF THE PATH 

Let us consider the energy loss of a particle that 
has suddenly started its motion and has stopped 
after a time interval T. We shall neglect the effect 
of scattering. Integration of the basic formula (1 7) 
with the use of the Lorentz condition (15) gives 

sin2 ((k 2it-w) T !2) 

X (kzv- m)2 (40) 

To evaluate the integral we shall use a method 
described above. We at first neglect the density 
effect and look to see that change in the loss is 
caused by the presence of the limits on the trajec
tory. For this purpose we rewrite Eq. (40) in the 
form 

,,,2 .,'k~v2 , /B[2v2w2' k;v'\l sin2 ((hzv-w)T/2) 
- "'" + h-J---;;;=.!--;- -c-•- \I- w"-,1 J --(kzv --::W)2 (41). 

As we already know, the neglect of the density ef
fect means that in Eq. (41) we are to set E = 1 
everywhere in Eq. (41) except in the absorption 
coefficient (19). Then we can integrate over the 
parameter K (we discuss the treatment of the 
pole later) and introduce the new variable of in
tegration x = (kzv-w)T/2. 

We see from the expression (41) that the main 
contribution to the integral comes from the region 
x ~ 1 and w:::::: Wat· We get (for v:::::: c, lkzv-wl/ 
w « 1) 

00 

ie2T ~ * F =-"" w dw (8- 8) 
-1t' v 

0 

+;o · • { c0x2 } / • ~~-~ rna x _ 1 
X ~ dx x 2 In :.'w2 1 :.'x / Tw + 1- v 1 c J • 

-00 

(42) 

From Eq. (42) we at once get the conditions for 
the effect of finiteness of the path to be appreciable. 
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If the condition (10) is satisfied, then the existence 
of the limits on the path has no effect, and integrat
ing over x we arrive at the usual loss theory 
[ Eq. (34) ]. In the opposite case we can neglect the 
quantity 1 - v / c in comparison with 2x/Tw in 
the argument of the logarithm and integrate over x: 

(43) 

Using Eqs. (32) and (33), we get 

F = (2rrNe4Z I mv) In (Tc~x~nax I 4w). (44) 

This formula is valid if the logarithm is large. 
Now let us estimate the influence of the density 

effect. As we have already seen, the density effect 
sets in when the condition (8) is satisfied. In this 
case the formula for the loss is Eq. (36). The com
bination of conditions (7) and (9) leads us to the 
criterion (12) given in the Introduction, under which 
the formula (43) holds. In this case the losses enter 
a plateau, the beginning and height of which are now 
determined not by the density effect, but by the 
finiteness of the path. It must be noted that the 
presence of limits to the path leads to the appear
ance of additional losses, which for a transparent 
medium appear in the form of radiation "at the 
stop. "5 

To separate this from the total loss [cf. Eq. (40) 
or (41)] we have to pass around the poles in the in
tegration over K. The passage around the poles 
[ cf. Eq. (24)] leads to a formula for the loss by 
radiation 

2e" 00~· +,.~ { v" 11;v2 l sin2 ( ( w- k2 v) T I 2) 
F d = - w dw dk ---- --. ---:---:--=---

ra 7t •. z c2 ,;;w2 J (w-llzv)" 
0 -00 (45) 

Let us rewrite the last formula, introducing the 
new variable 

x = (tJ- kzv = 1 - (v Vrs j c) cos.\} (46) 

( J is the angle the emitted quantum makes with the 
x axis): 

oo «>(l+v Vijc) 
0 r 2 ~· d -' dx f(' v2 _ ..!._) sin2 (x! 1 2) F rad = "=---- W W \ 2 " 
7tV , ~ C E X" 

0 w(l-v Vic) 

2 sin2 (xT! 2) _ sin2 (xT j 2) J 
+ EWX oW2 • 

(45') 

Suppose that 

vYslc> 1, 

XminT~1. 

Then we can use the equation 

x-2 sin2 (xT j 2) = f rrTO (x) 

and get the loss by Cerenkov radiation 
c2v \ 

Fe= T 7 ~ 
v Vi;c>O 

(47) 

(48) 

(49) 

If the condition (47) is not satisfied, but Eq. (48) is, 
then we can average the rapidly oscillating factor 
(i.e., replace sin2 (xT/2) by Y2 ). Then Eq. (45') 
can be rewritten in the form 

F - - v"e2 l/e r d f sin2 & d (cos&) (50) 
stop - 3 .\ W ) V . rrc 0 0 (1-(v elc)cos&)2 

For E = 1 this last expression becomes the well 
known formula (with a factor 2) for the stopping 
radiation. If the condition (48) is not satisfied 
there is a change of the formulas that have been 
given, because of the effect of finiteness of the 
path. Equation (49) is practically unchanged. 
Equation (50) (sic) will be decidely changed, since 
the main contribution to the integral comes from 
the region around Xmin· Here there is a complete 
analogy with the formulas for bremsstrahlung, and 
therefore the effect of multiple scattering which we 
omitted in Eq. (40) will also be very important at 
high energies. 2 
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