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A thermodynamic derivation is given of the equations of state (for small magnetization 
changes and deformations) that determine the magnetomechanical properties of magnetic
ally polarized ferromagnetic monocrystals possessing hexagonal symmetry. It is shown 
that in the case of nonuniform strains, the equilibrium values of the mechanical stresses 
and of the magnetic field intensity are connected by equations of state not only with the 
magnetization vector and strain tensor, but also with the rotation tensor, which determines 
the orientation of the volume element under consideration. On the basis of the equations ob
tained, conclusions are drawn regarding special features of the velocity of propagation and 
rotation of the plane of polarization of transverse elastic waves in ferro magnets. 

l. In works of the author, 1•2 equations of "state" 
have been obtained that describe the magnetoelastic 
properties of magnetically polarized magnetoelastic 
media in the dynamic regime; and on the basis of 
these equations, it has been shown3 that in the prop
agation of transverse elastic waves along the direc
tion of the magnetization, a rotation of their plane 
of polarization is to be expected. To determine the 
physical nature of certain constants that enter in the 
equations mentioned above and in the equation for 
the angle of rotation of the plane of polarization, it 
is necessary to consider specific types of magneto
elastic media. 

2. We consider ferromagnetic monocrystals. To 
make the calculation more definite, we choose for 
consideration ferromagnetic monocrystals possess
ing hexagonal symmetry, in which the sixfold axis 
is the axis of easy magnetization. With respect to 
their elastic, magnetic, and magnetoelastic proper
ties for small magnetization changes, such mono
crystals behave like magnetoelastic magnetically 
polarized media possessing uniaxial symmetry, 
whose properties were treated in references 1-3. 
We shall furthermore consider equilibrium proc
esses and treat the crystal as infinite. 

Let a change of the magnetization I occur in 
such a monocrystal, and let the monocrystal under
go an arbitrary elastic deformation, defined by the 
vector displacement u of an element of volume as 
a whole, the strain tensor Eij =! ( oui/Bxj + auj /oxi), 
and the rotation tensor wij = ! ( aui /axj- auj /oxi) 
of the volume element. The equations of state that 
connect the equilibrium values of the strains and 
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magnetization with the magnetic field intensity H 
and with the symmetric components aij and the 
antisymmetric components a{j of the mechanical 
"stress" tensor aft can be found from the con
dition that the thermodynamic potential 

<1> = Uex i Uc + Ume+ Uel- lf,nlm - Ciij ~ij -- c;(jWij, (1) 

be a minimum; here Uex• uc, Ume• and Uel are 
respectively the exchange, magnetocrystalline
anisotropy, magnetoelastic ( magnetoslrictive ) , 
and elastic energies. They are defined as follows: 

11 Jll~ I 1( I I ,,, Uex = l2 a! -r I 4 a2 I ' (2) 

(3) 

(4) 

For the case of monocrystals of hexagonal symme
try, when the x3 coordinate axis is chosen along 
the sixfold axis, the magnetocrystalline-anisotropy 
energy in the first approximation is equal to 

(5) 

where k is the unit vector along the x3 axis. In 
this case the tensor ~nij has the following inde
pendent nonvanishing components: 

:~ (quu- qnd J2. (6) 

The choice of Ume in the form (3), with (6) taken 
into account, assumes that in magnetically uniaxial 
monocrystals, the magnetostriction is not deter-
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mined solely by the orientation of the vector mag
netization, as had been assumed earlier,4•5 but de
pends also on the value of the magnitude of the 
magnetization. 6 

The tensor Cijkl• in contrast to the tensor 
qmnij• is invariant with respect to interchange of 
pairs of indices ij and kl. Therefore it has the 
same form as the tensor qmnij except that c3311 
= c1133· 

3. As an initial state, we may choose the state 
of the ferromagnetic crystal that one obtains by 
applying along the sixfold axis a uniform, constant 
polarizing magnetic field H0k, strong enough so 
that the crystal will be uniformly magnetized along 
the x3 axis. From the minimization condition for 
the thermodynamic potential (1), we find the equi
librium values of the magnetization I0k and of the 
stresses a~j in the initial state: 

Ho = (a1 + a2!5)lo, 

u~1 = o-~2 = 1<' 2 qsaul6, 

(7) 

(8) 

In practice, it is convenient to choose another 
state as initial state, namely in which the initial 
stresses are zero. This is dependent on the fact 
that the crystal is usually not in an absolutely 
rigid environment, and under the influence of the 
stresses a~j it is uniformly strained, i.e., ac-

. .f t . o o d o quires um orm s rams e: 11 = e: 22 an e:33 . 
4. We now consider the case in which there are 

present in the crystal a weak magnetic field h and 
mechanical stresses, alternating both in time and 
in space. In the crystal there will occur deforma
tions determined by the strain tensor E:ij and the 
rotation tensor Wij of the volume element, and 
the vector magnetization in each volume element 
will change its value slightly both in magnitude 
and in direction. 

Expressions (2) - (5) for the various energies 
have already been written in a definite coordinate 
system, related to the crystallographic axes [that 
is, a system in which the tensor constants have a 
completely definite form characteristic of the given 
crystal symmetry, for example the form (6)]; they 
are correct, strictly speaking, only for uniform 
strains and rotations (which were not contemplated 
in the theory of elasticity). In the general case, 
nonuniform strains are connected with nonuniform 
rotations of the volume elements of the crystal, 
and consequently also with nonuniform rotations 
of the crystallographic axes of the volume elements. 

We assume that the form of the expressions (2) 
- (5) for the energy densities, in which the tensor 
constants have a completely definite form charac-

teristic of the given type of symmetry, remains 
valid also for nonuniform strains, but that these 
energies must be referred to coordinate axes x1, 
x2, x3 related to the crystallographic axes of the 
volume element under consideration. 7 We there
fore introduce two coordinate systems: 1) a fixed 
coordinate system x1, x2, x3 attached to the crys
tallographic axes of the crystal in its initial state, 
with the x3 axis oriented along the sixfold axis; 
2) a local movable coordinate system x1, x2, x3 
attached to (and rotating with) the volume element 
under consideration, with the x3 axis oriented 
along the sixfold axis of the given volume element. 

5. We now obtain the explicit form of the ther
modynamic potential in the fixed system of coordi
nates. We first write the energies uc and Ume 
in the movable coordinate system. For this pur
pose it is necessary in formula (5) to replace the 
unit vector k by the unit vector k', connected 
with k by the relation 

k' = k + [wxk], (9) 

and in the expression (3) to substitute the values of 
the components of the vector magnetization and of 
the strain tensor in the movable coordinate system, 
I~ and e:ij, which are connected with the values 
of the components of these quantities in the fixed 
system of coordinates by the relations 
I'= I+ [Ixoo], s;1 = s11 + 2 (tu3E12 - w2813), ... , 

8~2 = 812 + W1813 - W282a + Wa (E22- 811), ... , (10) 

where w is the vector rotation of the volume ele
ment, dual to the rotation tensor Wij• with com
ponents given by the known relations Wt = w32 

= -w23• • • · · 
We next transform, according to formulas (9) 

and (10), to the fixed coordinate system. Here we 
choose as independent variables, determining the 
value of the change of the vector magnetization, 
the value of the change of absolute value ~I and 
the vector angle of rotation 9, which determines 
the rotation of the vector magnetization with re
spect to the fixed coordinate axes. For changes 
of the vector magnetization that are small in com
parison with its initial value I0k, its new value 
can be determined from the relation 

I= (/0 + M) (k + [6x kl) - 1/ 2 / 0 (62k- (6, k) 6), (11) 

and we obtain 

Uc = K1 {(w- 6) 2 - (k, w- 6)2}, (12) 

um-e = 1/2 qaanl~ (8u + 822)+ 1/2 qaaaal~caa+qaau lo(sn + 8dl1l 

+ qaaaa lo8aa1'1/- 2q2a2al~ (E2ae1- 81a02) 

+ (2q2323- q3333 + qaau) lg (Edul - E1aw2) · (13) 
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The exchange and elastic energies have the same 
form in both coordinate systems, since the first 
depends on the absolute value of the vector mag
netization, and since the expression for the second 
differs by terms of the third order of small quan
tities when written in the fixed and in the movable 
systems. 

On using the minimization conditions B<J?/aa = 0, 
8~/8~! = 0, and 8<J?/8Eij = 0 for the thermody
namic potential, and on taking account of (7) and 
(8), we obtain the following equations of state: 

hm = 'jmnl n + hmfSf + h~qWq, 
crg = h~nln + CgfEf + c;qwq, (14) 

where now by In are understood the small values 
of the change of magnetization from its initial state, 
and where the new symbols Ef and wq have been 
introduced; they are connected with the previous 
quantities Eij• Wm, and wij by the following 
scheme: E1 = E11, ••• , E6 = 2 E12, ••• , w6 = -2 w3 

= 2 w12 • Here and hereafter we shall assume that 
the indices m, n, i, and j run through the val
ues 1, 2, and 3; the indices f and g through the 
values 1, 2, ... , 6; and the indices p and q through 
the values 4, 5, and 6. 

Here the following components are different 
from zero: 
iu = l22 =(Hollo+ 2Kl/l~). iaa = (Hoflo + 2a21~). (15) 

(17) 

C44 = C;; = C2a2a. Css = (en- cd/2, (18) 

c~4 = - c:s = - (2q2323- qaaaa + qaan) 16!4 
=- (2hl; -lzaa + h31) 10/4. (19) 

If as initial state we choose not the state with the 
initial stresses (8), but the state usually encoun
tered in practice, in which these stresses are ab
sent, then we still get equations of state of the 
type (14), except that the constant ct4 will have 
the new value 

c:4 =- q2323l~j2 = - hlsl0;2. (19') 

6. On further setting B<J?/Bwm = 0, we get an 
expression for the antisymmetric component of 
the mechanical "stress" tensor, a{j, to which is 
equivalent (dual) a certain axial vector T m. Here 

(20) 

where 

., ., * 
C44 = - C;5 = C44• c;; = c;; = K1f2, 

(21) 

and Tp is connected with Tm and a;j by rela
tions of the type T4 =- Ttf2 = a:a, · 

We shall explain the physical meaning of the 
antisymmetric part of the mechanical "stress" 
tensor a[j. The right member of (20) was obtained 
by differentiating, with respect to the components 
of the vector angle that describes the orientation 
of the volume element, the magnetocrystalline
anisotropy and magnetoelastic energies, which de
pend on interaction of the magnetization (spin 
system) with the crystal lattice. Therefore these 
derivatives should give expressions for the com
ponents of the force couples (with sign reversed ) , 
- T~, exerted by the spin system on the crystal 
lattice of the volume element under consideration. 
Since in equilibrium no resultant couple should act 
on the volume element, this couple must be balanced 
by forces transmitted across the surface of the vol
ume element from its environment. These forces 
can be described by the antisymmetric component 
a[j of the mechanical "stress" tensor afj. From 
this it follows that the force couple T~ exerted 
by the spin system on the lattice is determined by 
the vector - Tm ( T~ = - Tm) dual to the anti
symmetric component afj of the mechanical 
"stress" tensor. However, the resultant force 
and couple (which figure in the equations of elas
ticity theory) on the volume element are deter
mined by the symmetric part O"ij of the mechan
ical "stress" tensor (or simply of the mechanical 
stress O"ij ). This is easy to show if one considers 
that the force on a volume element is determined 
by the divergence either of the tensor a{j or of 
the tensor T{j dual to the vector force couple 
T~, and if one takes account of the requirement 
that the resultant force moment must be expressed 
solely in the form of a surface integral. 

7. In the absence of equilibrium, the derivatives 
of the thermodynamic potential if? with respect to 
the components of the vector 9, which describe 
the orientation of the vector magnetization, deter
mine the components of the resultant force moment 
that acts on the magnetization. On taking account 
of this and using (14), we get for this moment the 
relation 

(22) 

where hg = hm- hm, and where hm is that value 
of the magnetic field intensity which would corre
spond to the given values of magnetization and 
strain if the process were an equilibrium process; 
that is, we must substitute for hm its value deter-
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mined by formula (14). Knowing the couple that 
acts on the magnetization, we can construct the 
equation of motion of the magnetization. 

8. We shall compare the relations obtained with 
the relations deduced earlier by a formal method. 
Equations (14) and (20) agree with Eqs. (7) of ref
erence 1 and (17) of reference 2. (We remark, in 
this connection, that in Eqs. (7) and (17) of the ar
ticles cited, E4, Es, ... , w6 must be replaced not 
by E23• E13• ... , w12, but by their doubled values.) 
However, the constants h{s, cf4, and cfl intro
duced earlier by the formal method are now ex
pressed through basic constants I0, K1, and ~nif 
that describe the ferromagnetic. 

9. Finally, we shall apply the relations obtained 
to the analysis of concrete physical processes. 

In reference 3 it was shown that rotation of the 
plane of polarization of elastic waves may be de
termined, in particular, by the term containing the 
expression h1s (his -his>. which according to (17) 
can be written in the form his ( 1 - K1 II0h1s). It 
follows that the rotation of the plane of polarization 
is determined not solely by the magnetostriction 
constant, but also by the magnetocrystalline aniso
tropy constant. In particular, for h1s > 0, the sign 
of the angle of rotation can depend on the ratio of 
the quantities K1 and I0h1s, which can change with 
change of temperature. In order of magnitude, hmf 
"' cijkZA.s IIo, where A.s is the saturation magneto
striction, and CijkZ"' 1012 dlcm2; thus we find that 
a calculation of the term Ktfi0h1s (that is, of the 
constant h{s) is necessary for ferromagnetics that 
possess a relatively large anisotropy constant and 
small magnetostriction. For example, for K1 ~ 106 

erglcm3 and A.s :s 10-6 this term is greater than 
unity. 

As a second example, we calculate the speed 
Ct of propagation of transverse elastic waves 
propagated along the sixfold axis in a magneto
dielectric. On solving the equation of motion of 
the theory of elasticity, pj.ii = Eluij IBxj. and taking 
account of (14), we get 

Ct = c~ { 1 - [h15 (h15 - h:5) -1nc:4l/rnc44}'h, c~ = (c44/p)'l•. 
(23) 

This expression differs somewhat from the ex
pression for Ct derived by Akhiezer, Bar'yakhtar, 
and Peletminskil 8 (on going over to the case of 
propagation of the wave along the symmetry axis 
and to low frequencies); namely, in it there are 
additional terms, containing the constants his and 
cf4, which take account of rotations of the volume 
elements. In this connection we note that the ex
pression for ct from reference 8, mentioned above, 
can be easily obtained by calculating the speed of 
propagation of elastic waves by the formula Ct 

= (clilp)112, where eli is the value of the elastic 
modulus measured at constant magnetic field. For 
quasistatic processes, there is a definite relation9 

between the components of the elastic modulus ten
sor measured at constant field, cijkz• and at con
stant magnetization, cfjkZ = Cijkl· For the present 
case this has the form cli = c44 (1-hJsiYuC44). 
This difference between eli and c44 bears the 
name "~g -effect." Thus the difference between 
the relations for ct given by Akhiezer and others8 

and by us [formula (23)] consists in this, that in 
the derivation of formula (23), along with calcula
tion of the ~g -effect, which received attention in 
reference 8, account has been taken of the rotation 
of the volume elements that takes place in propaga
tion of elastic waves transverse with respect to the 
polarizing magnetic field H0• 

We shall assume that in the initial state the fer
rodielectric is in an unstressed state. Then in ac
cordance with (15), (17), and (19'), we get 

Ct = c7 [ 1 -(his--+-- 1/2h1sH 0)/lnC44]'!.. 

Thus in this case the speed of propagation of 
elastic waves is determined by the ~g -effect 
alone when H0 = 0. On increase of H0 ( H0 » 2K1 I 
I0 ), Ct tends, if we take account of (15), not to c~ 
but to the value c~ ( 1 - h1sio I 2c44 ) 1/ 2, which may 
be either larger or smaller than c~ according to 
the sign of the magnetostriction. 
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