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The positions of the singular points are determined for the two Feynman diagrams shown 
in Figs. 1 and 7. 

BECAUSE of the recent interest in the singulari­
ties of scattering amplitudes it seems worthwhile 
to examine in detail the method of finding the sin­
gular points of complicated Feynman diagrams. 
We here use a method developed earlier1•2 to cal­
culate the singular points of the two Feynman dia­
grams shown in Figs. 1 and 7. We shall look for 
those singular points of these diagrams for which 
the values of all the integration parameters ai in 
the corresponding Feynman integrals are different 
from zero (cf. reference 2). 
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FIG. 1 

1. Let us consider the Feynman diagram shown 
in Fig. 1. We shall assume that the masses of all 
the particles involved in this diagram are equal, 
and take them equal to unity. Then this diagram is 
a special case of the scattering of scalar mesons. 
By symmetry we have the following equalities, 
which greatly simplify the further calculations: 

(1) 

where qik = qiqk is the scalar product of the four­
vectors qi and qk. 

The singular points of the Feynman diagram of 
Fig. 1 can be found by two methods: either by a 
trigonometric computation based on the properties 
of the scheme corresponding to the diagram of 
Fig. 1, or by an analysis of the determinants cor­
responding to the condition ~ i aiqi = 0 for each of 
the contours of the diagram of Fig. 1. 

The Trigonometric Method. The scheme corre­
sponding to the diagram of Fig. 1 is shown in Fig. 2, 
where we have introduced the usual notations W2 

= (P12 + P14)2 and Q2 = (P12 + P2a>2· 

FIG. 2 

As has been shown previously,2 the lines 3, 4, 
and 5 must lie in one plane, and the lines 1, 2, and 
5 in some other plane. We shall denote the angle 
between these two planes by cp. Then from the 
relation p~4 = ( q1 + ~ + <15 )2 = 1 we have 

(I +cos ex)( I + cos~) = sin oc sin~ cos r.p; 

from the relation W2 = ( ~ + ~ + q5 )2, 

(2) 

W 2= I + 2 (I + cos oc) 2 - 2 sin2 oc cos r.p; (3) 

and from the relation Q2 = ( q1 + ~ + q5 ) 2, 

Q2 = I +2(I + cos~) 2 -2sin2 ~cos?. (4) 

Substituting the value of cos cp obtained from Eq. 
(2) in Eqs. (3) and (4), we get the following para­
metric representation of the function F ( W2, Q2 ) = 0: 
Q2 = I + 2 (I + cos ~) 2- 2 (I +cos oc)( 1 +cos~) sin ~/sin oc, 
W2= 1 +2(1 +cosoc) 2-2(1 +cosoc)(l +cos~)sinocjsin~, 

(5) 
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where the angles a and {3 are connected by the 
relation 

a-~= -;r;j3. {6) 

The curve F (W2, Q2) = 0 is shown in Fig. 3. 
The value a = 0 corresponds to the asymptote 

Q2-.. oo, w2 - 9; {3 = 0 corresponds to the asym­
ptote W2 -.. oo , Q2 -.. 9. These asymptotes arise 
from the two dipole patterns of Figs. 4 and 5, re-
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FIG. 4 

FIG. 5 

spectively, which are obtained by reductions of the 
diagram of Fig. 1. To the point W2 = Q2 there 
correspond the values a = - {3 = -7r/6; at this 
point W2 = Q2 = 4 ( 2 + 31/2 ) . 

The Determinant Method. From Eq. (1) and the 
conservation laws of the four-momenta one easily 
gets the following relations: 

W 2 = 3 + 2q24+ 4q2s, Q2= 3 + 2q13+ 4ql•• (7) 
q14= q23=- (I+ q1s+ q25). (8) 

We then use the equation a1q1 + a2~- a 5q5 = 0. 
Multiplying it successively by the four-vectors 
(ql, q2, q5), (ql, q2, q3), and (ql, q2, '!4), we get 
the following three determinants: 

(9') 

(9") 

I I q12q1sl 
q21 1 q25 = 0. 
qg q24 q54 

(9"') 

Since q12 is known ( q12 = Y2), the condition (9') 
gives a connection between q15 and q25 . Figure 
6 shows the curve cp ( q15 , ~5) = 0, which is an 
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FIG. 6 

ellipse with the semiaxes (% )112 and (% )112. In 
virtue of the condition that the Feynman param­
eters ai are positive, only the part of the ellipse 
with ~5 > 0, q15 > 0 is used. 

Solving Eq. (9") for q13 and Eq. (9"') for q24 
and using Eq. (8), after substitution in Eq. (7) we 
get 

0 9 4 ( 1) 2 ( ~ -+- ) q25/2 - q15 W·= + q2s- - 2 . q1s+ q2s q25_q15;2 • 

0 1) 2 ( 3 ) q25-ql5/2 
Q-= 9 + 4 (ql5- - 2 + ql5+ q25 q25/2- ql5, (10) 

where q15 and q25 are connected by the condition 
(9'). The expressions (10) with the condition (9') 
are equivalent to the expressions (5) with the con­
dition (6). 

FIG. 7 

2. As a second example we shall consider one 
of the Feynman diagrams for the scattering of 
pseudoscalar mesons (Fig. 7). The masses of all 
particles in the diagram of Fig. 7 are unity. This 
diagram is interesting because it is of the same 
order as the diagrams considered by Mandelstam 
for 1r-1r scattering3 (cf. Figs. 8 and 9). 
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FIG. 8 FIG. 9 

To determine the singular point of the diagram 
of Fig. 7 it is more convenient to use the determi­
nant method. From the conditions of symmetry it 
is easy to get the following equalities: 

q1s= qas=- ql6=- q36• q2s= q4s= q26= q4G• 

q1z= q34=- q14=- q23· (11) 

Using these relations, we get the following ex­
pressions for W2 = ( P12 + Pt4 )2 and Q2 = ( P12 + P23 )2: 

(12) 
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Let us now determine the connections between 
the scalar products that occur in the right members 
of the expressions (12). From the relation pt2 
= (q2 + q5-q1)2 = 1 we have 

(13) 

We then use the equation a 1q1 + a2~- a 6qs = 0. 
By multiplying this equation successively by ( q1, 
q2 • qs ) • ( q1 • ~ • ~ ) • ( q1 • ~ • q3 ) • and ( q1 • q2 • q5 ) • 
we obtain determinants which we denote respec­
tively by t:.126, t:.124, t:.123, and t:.125 . Each of these 
determinants is equal to zero. Using Eqs. (13) and 
(11), we get from t:.126 a connection between q25 
and q15: 

q;6 (I+ qis) + q2s (I-- qi5)- q1s (I- qt5) = 0. (14) 

In solving the equation (14) one must remember the 
condition Cl'i > 0. 

From t:.124 = 0 we get an expression for q24 : 

q24 = 1- 2ql2 ( q12q25T qlo)/(q2s+ ql2qts), (15) 

from t:.123 = 0 an expression for q13 : 

q13= 1- 2q12 (q2s+ ql2qls)/(qi2qt.s+ qls), (16) 

and from t:.125 = 0 an expression for q56 : 

(17) 

In the expressions (15) - (17), q12 must be ex­
pressed in terms of q15 and ~5 as shown in 
Eq. (13). 

Thus by substituting Eqs. (15), (16), and (17) in 
Eq. (12), we get the following one-parameter form 
of the curve F (W2, Q2) = 0: 

W2= 6- 4ql2 Ql2q,+ Qls + i)q2s+ 2 qi.- :is ' 
Q25 + Q12Q15 1 - qi2 

2 2 

Q2=6-4 ?q,+q12Q15_8 --2q25-ql5 (18)* 
qL Q12Q2s+ Q15 qlo ' 1 _ q2 ' 

1~ 

where q12, q15, and q25 are connected by the re­
lations (13) and (14). 

*The expressions for W2 and Q2 can be transferred to the 
form 

Q2 = G- 8q1s -- 4 
1 - q 15 ~ . Q15 + Q25 
1 - Qos -- QJs-Q2s- 2 • 
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FIG. 10 

Figure 10 shows the curve of F ( w2, Q2 ) = 0. 
To the asymptote Q2 - CXl, W2 -16 there corre-
spond the values q16 - CXl , ~4 = ~5 = ~8 = 1, and 
to the asymptote W2 - CXl' Q2 - 16 the values 
q25 - CXl and q13 = - q15 = - q56 = 1. These asym­
ptotes are obtained as the singular points of the 
dipole patterns reduced from the diagram of Fig. 7. 
To the point W2 = Q2 there correspond the values 
q25 = - q15 = ( 1 + 51/2 )/2, q2 = 2 + 51/2. At this point 
w2 = Q2 = 18 + 8 x 51/2• 

In Fig. 10 curve 7 corresponds to the diagram 
of Fig. 7, and curves 8 and 9 correspond respec­
tively to the diagrams of Figs. 8 and 9. As can be 
seen from Fig. 10, curve 7 lies much higher than 
curves 8 and 9. 

The writers express their gratitude to Acade­
mician L. D. Landau for his interest in this work. 
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