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The change of the transition probability caused by the Coulomb scattering of particles by the 
atoms of the medium is found for a certain class of processes in which there are one charged 
particle and an arbitrary number of neutral particles in the initial and final states. 

1. INTRODUCTION 

ExPERIMENTAL studies of processes of interac­
tion of high-energy particles are often made in 
rather dense substances. As a rule the data ob­
tained in such experiments are compared with the 
theoretical results of calculations of the probability 
of the given process in vacuum. This means an im­
plicit use of the hypothesis that possible participa­
tions of the atoms of the surrounding substance in 
the process lead only to vanishingly small correc­
tions to the transition probability. In particular, 
this applies to the possible transfer of some part 
of the momentum to atoms of the medium through 
Coulomb scattering of the particles involved in the 
process. 

The incorrectness of this assumption was first 
pointed out by Landau and Pomeranchuk, 1 who 
showed that multiple scattering of a particle by 
atoms of the medium causes a considerable change 
in the bremsstrahlung. In the case of bremsstrahl­
ung a transfer of momentum to the medium would 
occur even if the Coulomb scattering were not 
taken into account. Therefore it is convenient to 
take account of the additional transfer of momen­
tum to the medium in the treatment of the basic 
process. The position is different, however, when 
one treats a process that occurs spontaneously in 
vacuum. Transfer of momentum to atoms of the 
medium leads to the appearance of a new type of 
process, qualitatively different from the basic 
process. For example, spontaneous 7r-J.L decay 
is possible in vacuum. In matter one has besides 
the spontaneous type of decay the possibility of an 
"induced" or "deceleration" type of decay, in which 
atoms of the medium take part in the process, re­
ceiving part of the momentum of the initial par­
ticle. Since in the usual experimental arr;mgement 
the momentum transferred to the medium is not 
measured, the experimentally observed transition 

probability must include both the spontaneous and 
the "induced" processes. 

We present below a general method for calculat­
ing probabilities of processes with transfer of mo­
mentum to atoms of the medium taken into account, 
and we consider the change of the transition proba­
bility owing to this effect for the simplest cases. 
We note that this effect occurs already in the ap­
proximation linear in the density of medium atoms, 
in which the action of each atom is considered in­
dependently. Therefore in most cases it is not 
necessary to deal with multiple scattering, and 
we can confine ourselves to first-order perturba­
tion theory in the potential of the atoms of the 
medium. 

We consider only cases of very fast charged 
particles, with momenta large in comparison with 
the reciprocal of the Thomas-Fermi radius of the 
atom, A. = me2 Z 113 ( ti = c = 1 ) . This means that 
we can consider only Coulomb scattering by the 
nuclei of the atoms, including the action of the 
electron shells in terms of a screening factor 
only. 

We also note the following fact: The occurrence 
of finite energy losses in the motion of a charged 
particle through matter has the consequence that, 
unlike the situation for vacuum, the imaginary 
term in the mass of the particle, which Feynman 
introduced to prescribe the correct way of going 
around the poles for the Green's function, is now 
a finite, though indeed small, quantity. The finite 
value of this quantity is also due to the presence 
of the electron shells of the atoms. We shall neg­
lect here effects associated with the finiteness of 
the imaginary term in the mass. 

In treating the interaction of a charged particle 
with an individual atom we shall neglect retarda­
tion and the recoil of the atom, restricting the 
treatment to not very large momentum transfers. 
Under the assumptions that have been made the 
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total potential of all the atoms of the medium, 
U ( x) = ~ U0 ( x- xa) [U0 (x-xa) is the potential 

a 
of an individual atom], can be regarded as an ex­
ternal field. The total potential U ( x) depends on 
the specific (but unknown) distribution of the 
atoms of an amorphous medium. Therefore in the 
final results there must be an averaging over the 
coordinates xa of the atoms; this is denoted by 
the symbol < ... > . Because the medium as a 
whole is neutral, < U (x) > is a constant inde­
pendent of x. To simplify the writing it is con­
venient to introduce instead of U the potential 
V (x) = U (x) - < U (x) >, including the constant 
< U (x) > in the definition of the fourth component 
of the momentum of the charged particle. Thus 
the problem reduces to the calculation of the tran­
sition probability in an external field V ( x). 

2. THE MATRIX ELEMENT OF THE PROCESS 
IN AN EXTERNAL FIELD 

Let us consider a process whose initial and 
final states involve one charged particle, the ini­
tial and final four-momenta being Pt and p2• 

Besides this particle, there can be an arbitrary 
number of neutral particles in both the initial and 
the final states. Let us denote the difference of the 
four-momenta of the neutral particles in the initial 
and final states by k. Assuming that the Coulomb 
scattering of virtual particles can be neglected, we 
shall deal with the effects of the scattering of the 
initial and final charged particles by the potential V. 

The matrix element of the process in vacuum 
can always be put in the form 

M0 = ~ dx~0 ; (x) 0 (k) ~odx) exp (ikx), (2.1) 

where ¢01 ( x) and ¢02 ( x) are the wave functions 
of the initial and final charged particles in vacuum. 
In what follows we shall assume them normalized 
so that there is one particle in a large volume Q. 

For example, for spin Y2 we have ¢01 ( x) = n-112 u1 

x exp (- ip1x). In this connection we shall always 
understand the three-dimensional integral over 
momenta to mean the sum, 

~ d3 p _.,. (2rr)3.Q-I 2,; ' 
p 

The matrix element of the process in the ex­
ternal field can be obtained from Eq. (2.1) by re­
placing the vacuum wave functions ¢01 and ¢02 

by the wave functions of the charged particles in 
the external field. Assuming that the effect of the 
external field is small, we can determine the de­
sired wave functions by perturbation theory. As­
suming the momentum l transferred to the exter-

nal field small in comparison with the momentum 
of the particle, in the first nonvanishing approxi­
mation in l/p and in second-order perturbation 
theory in V we can get the expression 

~1(2) (x) = cl(2) {I + fl(2) (x)}cjiOl (2) (x); (2.2) 

where f ( x) denotes the quantity 

f ( ) = 2£\ d/V (I) exp (ilx) {I , 2£ \ dl'V (I') exp (il'x) } 
X J I"+ L.pl --i- io T ) (I + 1')2 + '2p (I+ I') T io ' 

(2.3) 

and the normalization constant C is determined 
from the requirement that the wave function of the 
particle in the medium be normalized just like that 
of the particle in vacuum (one particle in the vol­
ume Q). It follows that the normalization constant 
C is given by 

It may seem that the normalization constant C 
should be set equal to unity, since the difference 
1- c2 contains the large volume Q in its denomi­
nator. Actually this must not be done, since in the 
numerator of the difference 1- C2 there is a quan­
tity proportional to the total number N of the 
atoms of the medium. The ratio of these quantities 
is proportional to the number of atoms per unit 
volume, and remains constant as the normalization 
volume goes to infinity. Therefore we must not 
neglect the difference between the normalization 
constant C and unity. 

From what has been said it follows that the ma­
trix element of the process in the external field can 
be written in the form 

M = ~ dx exp (ikx) (~02 (x) 0(!?) ~01 (x)) (I + t; (x)) (1 + fr (x)). 

(2.5) 

Assuming for definiteness that the charged particles 
have spin %. and denoting the momentum Pt- P2 - k 
transferred to the external field by s, we can 
transform Eq. (2.5) to the form 

M = ~ dx exp (- isx) (u20 (p1 -!h- s) ui) 

3. THE TRANSITION PROBABILITY IN THE 
EXTERNAL FIELD 

(2.6) 

From Eq. (2.6) it is easy to get the square of 
the absolute value of the matrix element and the 
transition probability for the process in the exter­
nal field. As is well known, the differential tran­
sition probability is connected with the matrix ele­
ment by the formula 
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where v is the number of neutral particles in the 
final state, and k1, ... , kv are the momenta of 
these particles. We can replace the integration 
over one of the momenta of the neutral particles 
in the final state by integration over k, and then 
go over from integration over k to integration 
over the momentum s transferred to the medium. 
Since for a process in vacuum the integration over 
the momentum of one particle is always taken be­
tween infinite limits by means of a i5 function, we 
can perform the integration over s between infi­
nite limits without destroying the correspondence 
with the vacuum case. 

Using this idea, we easily get from Eq. (3.1) 

dW = :t CiC~ ~~ dx dx' ~ d3s exp [is (x- x')l 

X (! + f~ (x')) (1 + f2(x')) 

Carrying out the integration over x and x', 
one easily convinces oneself that only small values 
of s play any part in the integral over s. There­
fore, provided the difference p1 - p2 is not small, 
the quantity I u20 ( Pt- P2 - s) Ut 12 is a slowly vary­
ing function of s as compared with the exponential. 
Taking this slowly varying function from under the 
integral sign, we can relate the transition probabil­
ity in the external field to the transition probability 
dW0 in vacuum: 

dW0Q~d3x(1 +b!(x))(1 +b2 (x)) 
dW = (3.3) 

~ d3x (1 + b1 (x)) ~ d3x' (1 + b2 (x')), 

where we have used the notation 

b (x) = j 1 + f (x) [2 - 1. 

It is easy to see from Eq. (3.3) that inclusion of 
the normalization leads to cancellation from the 
final result of all terms associated with the effect 
of the external field on only the initial or only the 
final particle. In fact, using the smallness of b ( x), 
we can get from Eq. (3.3) the formula 

dW = dW 0 (1 + n-1 ~ d3xb1 (x) b2 (x)- Q- 2 

(3.4) 

When we substitute in Eq. (3.4) the explicit ex­
pression for b1 ( x) and b2 ( x) we must rem em-

ber that we are using perturbation theory for the 
external field, so that in Eq. (3.4) we must include 
only the part of b ( x) linear in the field, dropping 
terms quadratic in the field. Besides this we must 
note that in the cases we are concerned with, in 
which the external field is that of an individual 
atom, or else we are using the external potential 
V ( x) = U ( x ) - < U ( x) > , the last term in Eq. 
(3.4) is zero. Therefore the final expression for 
the transition probability in the medium is con­
nected with the transition probability in vacuum 
by the formula 

dW = dW 0 {1 + (2rr)3 Q-14£1£ 2 ~ d3liV(l) [2 [(J2 + 2p11- iof1 

+ (1 2 ~ 2pli + i0f1J [(P + 2p2I + iofl 

(3.5) 

Let us apply this formula to the case in which 
we are dealing with the external field of an indi­
vidual atom. Then in virtue of the fact that in our 
approximation the effects of the atoms on the proc­
ess are treated independently, to get the total effect 
of N atoms we must multiply the correction for 
one atom by the total number of atoms. Thus we 
get from Eq. (3.5) the result 

X (l2 + 22pl- i0f1 [(J2 + 2pll- i0f1 

+ (J2- 2pll- i0f1J}' (3.6) 

where n is the number of atoms per unit volume. 
Exactly the same formula is obtained if we con­

sider the process in the external potential V (x) 
= U ( x) - < U ( x ) > . If we use the fact that in the 
momentum representation the total potential U is 
connected with the potential U0 of an individual 
atom by the relation U (p) = U0 (p) i5 (p4 ) x 
6exp(ip•ra), we easily show that <IV(l) 12> 
a 

= N I U0 ( l) 12• By usi~ this result one gets Eq. 
(3.6) from Eq. (3.5). 

4. APPLICATION OF THE DIAGRAM TECHNIQUE 

The result obtained above can also be found by 
a different method, by using an analogy with the 
diagram technique of quantum field theory. In the 
derivation of Eq. (3.6) the averaging over the posi­
tions of the medium atoms was carried out only in 
the concluding stage of the calculations. We can 
arrive at the analogy with quantum field theory if 
we do the averaging over the positions of the atoms 
somewhat earlier. Let us consider the average 
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value of the product of two potentials V { l) and 
V { Z') in the momentum representation. Using 
the fact that 

(~ exp (ipr a)) = Nov. 0 = n (2c::) 3 il (p), 
a 

we easily get 

<V (l) V (l'), = F (l) o<4 J (I + !'), 

The presence of the four-dimensional o function 
on the right enables us to regard Eq. {4.1) as an ex­
pression analogous to the propagation function of a 
quasi -particle. If both potentials V { l) and V { Z' ) 
are in the same matrix element, the averaging of 
their product leads to a transfer of momentum 
from one particle to another (from one point of a 
diagram to another). Therefore the average value 
{4.1) can be graphically represented by connecting 
the points of action of the potentials on a Feynman 
diagram by a dotted line. In other words, such av­
erage values are taken into account in the same way 
as the exchange of a virtual photon, but with the 
propagation function (4.1). 

There is also another possible case, in which 
one of the potentials to be averaged is in the ma­
trix element M and the other in the Hermitian 
adjoint matrix element M+. Using the fact that 
there is always an integration over the momenta 
l and l' transferred to the external field, we can 
put the result of integrating the expression {4.1) in 
the form 

(4.2) 

It is easily seen that the average values (4.2) 
are to be taken into account in just the same way 
as the emission of real photons, but with the factor 
e { 2w) - 1/ 2 replaced by n112 ( 211' )312 U0 ( 1 )2 and with 
an integration over the momenta of the emitted 
"quasi-particles." Average values of this type cor­
respond to a mean transfer of momentum to atoms 
of the medium. 

These arguments make our problem of the cal­
culation of the probability of a process with account 
taken of transfer of momentum to the medium en­
tirely analogous to the problem of the calculation of 
radiative corrections to the process in que~tion; we 
are here concerned not with corrections caused by 
the electromagnetic interaction, but with those 
caused by interactions with "quasi-particles." As 
is well known, in the calculation of radiative cor­
rections to the experimentally observable cross 
section one must include not only radiative correc-

tions owing to the exchange of virtual photons, but 
also those processes occurring in the same order 
of the perturbation theory and involving the emis­
sion of small quanta that are not registered by the 
experimental apparatus. The corresponding diagrams 
are shown in Fig. 1. 

Pz 
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FIG. 1 

Diagrams C and D contain proper-energy parts 
in external lines. A renormalization of the wave 
function must be carried out in the corresponding 
parts of the matrix element; it can, for example, 
be performed by the Feynman method.2 This re­
normalization leads to the same results as the nor­
malization of the wave function in the external field 
which was done in the preceding section. 

The cancellation in the final result of all expres­
sions involving the effect of the external field on 
only one initial or one final particle is analogous 
to the cancellation of the infrared divergence in 
the case of the electromagnetic radiative correc­
tions. 

It is convenient to represent all the terms con­
tributing to the final result by so-called generalized 
Feynman diagrams, in which together with the graph 
corresponding to the matrix element there is also 
drawn its mirror image, corresponding to the 
Hermitian adjoint matrix element. Figure 2 shows 
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FIG. 2 
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all the diagrams of this kind; diagrams I and II 
correspond to transfer of momentum to the medium 
(emission of "quasi-particles"), and diagrams III 
and IV correspond to the process without mean mo­
mentum transfer to the medium (exchange of vir­
tual "quasi-particles"). 

It is easily verified that by means of the diagram 
technique one again gets Eq. (3.6). 

5. THE EXPERIMENTALLY OBSERVED TRANSI­
TION PROBABILITY 

To obtain the probability of a process in the me­
dium we must substitute in Eq. (3.6) the explicit ex­
pression for the potential U0 of an individual atom: 

U0 (r) = (Ze2 / r) exp (- J.r); U0 (p) = (Ze2 ; 2~t2)(p2 + f..2r1. 

(5.1) 
From Eqs. (3.6) and (5.1) we get the formula for 
the transition probability in the medium 

dW = dW0 {1 + (2; ~t)4£1£2 2Re ~daz (J2 + t..2fz 

X (J2 + 2p21- i0f1 [(12 + 2p11- i0f1 

+ (J2- 2pll- i0f1l}. (5.2) 

The calculation of the integral is carried out in the 
Appendix; for not too small angles J between the 
momenta of the charged particles, p1 and p2 

( 2 I Pt II P2l sin J > A. I Pt + P2 I ) we have the follow­
ing formula: 

dW = dW0 {1- 4~t2Z2e4nJ..-a£1£2 / V PiP~- (P1P2) 2}. (5.3) 

In ordinary units this is 

dW = dW 0 { 1 - 4or2 Zn (1i I mc)3 (Tic 1 e2) 

(5.4) 

In the derivation of this formula we have taken 
into account only the Coulomb scattering of the ini­
tial and final charged particles and have neglected 
the scattering of virtual particles. Let us estimate 
in what cases this neglect is justified. It is easy to 
see that in the averaging of the product of a pair of 
potentials V ( l) and V ( l' ) over the coordinates 
of the atoms there appear in the matrix element 
integrals of the type 

~ d4/o (14) 1 u 0 (I) 12 

IT [(pi+ [)2- m;J 

We have taken into account only those factors in 
the denominator for which p2 = m2, neglecting the 
terms containing l in the factors for which p2 ;e m2• 

This is justified in cases in which the effective val­
ues of the momenta of the virtual particles satisfy 

the inequality p2 - m2 » A. 2• If this condition is sat­
isfied the formula (5.4) remains valid for a process 
of arbitrary order, if in the initial and final states 
there is one charged particle together with an ar­
bitrary number of neutral particles. 

We note that Eq. (5.4) is valid both for particles 
of spin t;2 and also for particles of spin 0. In fact, 
all formulas up to Eq. (2.6) are valid for arbitrary 
spin; the change of Eq. (2. 6) for spin 0 is trivial, 
so that Eqs. (3.3)- (3.6) are also valid for arbitrary 
spin. 

Equation (5.4) cannot be used for small values 
of the difference p1 - p2, that is, in cases in which 
k is small in magnitude. In this case the quantity 
I u20 (p1 - P2- s) u1 12 in Eq. (3.2) cannot be re­
garded as a slowly varying function of s. Besides 
this, Eq. (5.4) is invalid in the region of small 
angles J between p1 and P2• such that 21 Ptll P21 
x sin J < A. I p1 + p2 1. These cases require further 
consideration, since in this region it may be neces­
sary to include the eftect of higher orders of per­
turbation theory in the external potential of the 
atoms of the medium. 

Let us estimate the size of the corrections to 
the transition probability for some media. Intro­
ducing the speeds /3 1 and /32 of the charged par­
ticles, we can write Eq. (5.4) in the form 

dW = dWo (1- B I ~1~ 2 1 sin & !), (5.5) 

where for lead, water, and liquid hydrogen the co­
efficient B has the values 0. 75 x 10-3, 0.9 x 10-4, 

and 0.6 x 10-5, respectively. It follows that for 
small angles the change of the transition probabil­
ity in dense substances near the end of the periodic 
table can become appreciable. On the other hand 
it is well known that for high energies of the initial 
particle the process occurs only in a small range 
of angles ( J :S (1 - f3l) 112 ). In such cases we can 
also expect that the corrections to total transition 
probabilities will be large. We shall illustrate 
these results with the example of 7r-IJ. decay. 

6. APPLICATION TO 1r-p. DECAY 

As is well known, the probability of 7f-IJ. decay 
in vacuum can be written in the form 

(6.1) 

It follows from Eq. (5.4) that the decay probabil­
ity in a medium can be written in the form 

dW = dW0 {I - 4;;2Z 2e4n),-3 I ~ 1~zl sin% j}. (6.2) 

As has already been pointed out, at very small 
angles J < "-I Pt + P2l/2l Ptll P2l Eq. (5.4), and 
consequently also Eq. (6.2), is incorrect. Such 



622 M. I. RYAZANOV 

small angles, however, make only a negligibly 
small contribution to the total decay probability. 
Therefore we can get the total decay probability 
by integrating the approximate formula (6.2). In­
stead of integrating over the angle J. it is conve­
nient to use the conservation laws to express J. 
in terms of the J.L -meson energy E2 and intergrate 
over E2 from its minimum value {Et/2) [ 1 +J.L 2M- 2 

- {3(1-JJ. 2M-2)] to its maximum value (E1 /2)[ 1+ J.L 2M-2 

+[3(1-J.L 2M-2 )] (M and E1 are the mass and energy 
of the 71' meson). After the intergration we can write 
the total decay probability for a meson passing 
through the medium with speed {3 1 in the form 

w = w1 {Vi - ~2- 21t3Z2e4n M~ + p.'} 
1 ~J,s M2 _ p.2 • 

W''1 = (g 2 / 8rr) [1-2M (1- rc.•M-2)2. (6.3) 

Thus the Coulomb scattering of the decaying 
particle and the decay products leads to a decrease 
of the total decay probability, i.e., to an increase 
of the lifetime of the unstable particle. 

Let us emphasize once again that this result 
applies only to the decay of a 1r meson moving 
swiftly through the medium, and cannot be ex­
tended to a 71' meson at rest. Furthermore, for 
a 71' meson at rest in the medium the influence of 
the Coulomb scattering can act only on the J.L me­
son produced in the decay, i.e., just on the final 
charged particle. As has been shown above, in 
this case there is on the average no change of the 
transition probability. 

The change of the decay probability is especially 
marked at high 71' -meson energies, since the main 
term, the decay probability in vacuum, falls off 
linearly with increase of the energy, and the correc­
tion term approaches a constant value as the energy 
increases. For lead, water, and liquid hydrogen 
the coefficient 21r3z2e4nA. -3 ( M2 + J.Lz) ( M2 _ JJ-2) -1 

has the values 3 x 10-3, 4 x 10-4, and 2 x 10-5, 

respectively. Therefore in lead, for example, at 
71' -meson energies of the order of 1010 ev the cor­
rection term is 30 percent of the main effect, and 
in water at the same energy the correction is about 
4 percent of the main effect. The use of perturba­
tion theory to treat the total potential of the atoms 
of the medium makes the result only qualitatively 
correct for large values of the correction. There­
fore it is interesting to treat processes with trans­
fer of momentum to the medium without handling 
V by the perturbation method; such a treatment 
will be presented elsewhere. Finally, for the mo­
tion of particles of very high energy in a medium 
one should take into account losses in the medium. 
This fact makes the results obtained here inapplic­
able at very high energies. 

We note that in its nature and properties the 
effect treated here is an analog of the Landau­
Pomeranchuk effect for bremsstrahlung. 
In both cases a change of the transition probability 
is caused by the Coulomb scattering of the charged 
particles by the atoms of the medium and the effect 
reduces to the transfer of momentum to the atoms 
of the medium. The only difference is that in the 
case of bremsstrahlung it is convenient to 
take the transfer of momentum to the medium into 
account as part of the bremsstrahlung proc-
ess itself, and in the case of decay we have to deal 
with a further process of decay in an external field 
which is qualitatively different from the main decay 
process. 

The effect of transfer of momentum to the atoms 
of the medium must be taken into account for all 
processes involving at least two fast charged par­
ticles. The extension to the case of several charged 
particles is obvious. If the scattering of the virtual 
particles can be neglected, the averaged differential 
transition probability for the case of several charged 
particles will have a form analogous to Eq. (5.4). To 
get the total transition probability a separate treat­
ment is required in each concrete case. 

In conclusion, I take this occasion to thank E. L. 
Feinberg and V. M. Galitskil for helpful discussions. 

APPENDIX 

The integral in Eq. (5.2) 

.r = Re ~ d3Z (F + i.2f 2 (F + 2pll- i6f1 

X {(F-[- 2p21- i0f1 + (F- 2p21- i/)fl} 

can be put in the form 

+l 1 l 

J = Re (I ~ ~ ~) ~ du ~ 2xdx ~ 3y2dy ~ d3l 
-1 0 0 

+1 1 1 

= Re i~2 (I + -~ :iJ ~ du ~ 2xdx ~ 3y2dy 
~ -1 0 0 

Integrating over y and taking the real part, we 
have 

+1 1 

J=4rr2 (1+ ~:A)~ ~du~xdx[4(p2ux+pi(l-x))2+"-2r2 
-1 0 
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Changing to the variables t = ux + ( 1 - x) and 
TJ = ux - ( 1 - x ) and abbreviating p1 + p2 = q and 
P1 - p2 = k, we get after integrating over t 

X { -1 'Yl (q2 + qk) 
tan JfPq• + 'Yl' (q•k•- (qk)2) 

-1 'YJ(Qk-q') } 
-tan Vi..2q• + 'Yl• (q•k2- (qk)') • 

grand is determined by the square root in the de­
nominators, and the main contribution is from 
small values of TJ. Assuming that the inequality 
just stated holds, we can then get the approximate 
result 

1 L. D. Landau and I. Ya. Pomeranchuk, Dokl. 
Akad. Nauk SSSR 92, 735 (1953). 

2 R. P. Feynman, Phys. Rev. 76, 769 (1949). 
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