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The problem of the instability of longitudinal oscillations of low temperature electron-ion 
plasma is discussed. In an isotropic plasma the oscillations are always damped, while in 
an anisotropic one the ion motion may lead to the appearance of solutions that increase with 
time, i.e., to instability. 

RECENTLY problems connected with the instabil
ity of a current flowing through a plasma, and par
ticularly those connected with the instability of lon
gitudinal plasma waves, have come in for ever in
creasing attention. Thus, Bohm and Gross1 and 
Akhiezer and Fa'inberg2 have investigated the oscil
lations of a plasma containing an electron beam and 
have demonstrated that the oscillations increase 
with time. In these studies ion motion was alto
gether neglected. In some cases, however, inclu
sion of ion motion may prove essential and produce 
new forms of plasma instability due to electron-ion 
interaction (see below). 

Let f0e(V) and foi(V) represent equilibrium 
electron and ion distribution functions (normalized 
to unity). For a given equilibrium distribution the 
asymptotic behavior of the solution is determined, 
as is known, 3 by the roots of the dispersion equation 

- iw~. { \ kofoefov _J__ r kiJfo;fov} 
I - fi2 j dv s + ikv ' ll j dv s --i- ikv , (1) 

where w%e = 21re2ne /me, o = zme /mi ( z is the 
ion charge), k is the wave vector, and s = iw + y. 
Since we shall be concerned only with solutions that 
increase with time ( y > 0), the integrals in (1) can 
be taken along the real axis. Before proceeding to 
the discussion of a concrete case, we shall make a 
few general remarks. 

If we transform Eq. (1) by integration by parts 
and separate the result into a real and imaginary 
part we obtain a system of two equations for w 
and y. One of these equations has the following 
form: 

\ f f w + kv i J dv [ oe (v) + ll oi (v)][(w+ kv)2+ !'P = 0. (2) 

Two conclusions follow directly from this equation. 
First, oscillations with frequency w > kv are 

always stable, while oscillations with frequency w 

< kv may be unstable. Thus, the following inequal
ity is a condition for instability: 

V> wjk = Vph• (3) 

where V represents some average value of the 
velocity. Condition (3) means that only waves 
whose phase speed is less than the average speed 
of the particles can be unstable. (This condition 
was first noted by Bohm and Gross .1 ) We shall 
show that condition (3) is necessary but insufficient; 
this will become apparent from an example dis
cussed below. 

Secondly, in the case of an isotropic plasma the 
oscillations are always stable for arbitrary distri
butions of the form foe( v2 ) and foi ( v2 ). Actually, 
by integrating Eq. (2) over all directions in the ve
locity space, we find 

r 2 foe(v2) + ofot (v2) -
jW.) v dv [12- w2 + k2vzp + 4w212 - 0, (4) 

0 

whence it follows that y = 0. The contrary asser
tion in the article by Bohm and Gross1 is the result 
of an error in the computation of the integral ap
pearing in the dispersion relation. Their result 
would have been incorrect none the less if only be
cause of the fact that when the integration is along 
the real axis, as Landau has demonstrated, 3 it is 
in principle impossible to obtain damped solutions. 

Let us examine a case where the electron gas 
is described by a drifting Maxwellian distribution, 
while the ion distribution is isotropic and likewise 
Maxwellian, i.e., 

foe (v) = (m,j2rrxT,)'12 exp {- m, (v- u) 2j2xT,}, 

fot (v) = (mtf2rrxTt)''•exp [- (mtV 2j2xT1)]. (5) 

Such a case might occur in a plasma located in a 
strong electric field. 4 

Substituting (5) in Eq. (1), we obtain the follow
ing dispersion equation: 
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F (Is+ ikuj2, t:1) +oF (s~, Cl;} + w;2 = 0. (6) 

The following designations apply here 

Cle = m.j2xT •• 

z 

w(z) = e-z'(l + :~ ~et'dt). (7) 
0 

Equation (6) with u = 0 was studied by Silin5 and 
Kovrizhnykh6 who showed that when k is 
small, two modes of plasma oscillations occur, 
which are entirely different in their properties. 
The ftrst mode, called optical, is characterized 
by comparatively large oscillations of the charge 
density while the ion motion is insignificant. For 
this mode of plasma oscillations, w ( k) ;<o 0 with 
k = 0. The optical mode is obtained by solving 
Eq. (6) with u = 0 and with the second term neg
lected. The second, or acoustic mode, on the other 
hand, is characterized by small oscillations of the 
charge density and a linear dependence of s on k. 

An analogous division into optical and acoustic 
modes may also be adopted for the case where u 
;<o 0. The optical mode will correspond, as for the 
case u = 0, to the solution of Eq. (6) with the sec
ond term omitted. Naturally the solution of this 
equation will differ from the corresponding solution 
where u = 0 due to the appearance of the imaginary 
term ik • u, which corresponds to a Doppler effect 
due to the electron motion. The character of the 
oscillations specified by the real part of s does 
not change, i.e., the optical oscillations are attenu
ated regardless of the magnitude of u. This cir
cumstance indicates the insufficiency of condition 
(3). It is a different matter with the second, or 
acoustic, mode of plasma oscillations. When u 
;<o 0, the acoustical solution of Eq. (6) may be un
stable. The frequency region where s2ai /k2 » 1 
corresponds to the unstable solutions of Eq. (6). 
Therefore, if we make use of the asymptotic repre
sentation of w ( z) in the region where Re (s) > 0, 
we obtain from Eq. (6) the following dispersion 
equation, correct to terms ,.., k2/s2ai: 

[(s + iku)2 + k2v~P + of(s2 + k2v~) + w;2 = o, (8) 

where v~ = 3kTe /me, vr = 3kTi/plf, represent 
the thermal speed of the electrons and ions respec
tively. As was noted above, the linear dependence 
of s on k is characteristic of the acoustic mode. 
Therefore, it is always possible to isolate a region 
of k -space in which s2 « w~e· In this case the 
last term in Eq. (8) can be neglected. This also 
corresponds to neglecting oscillations of the charge 
density. Finally, we obtain the following solution 
for Eq. (8): 

s =- ikuo + [ o (ku)2 - k2 (ov: + v7)J'1•. (9) 

Because of the asymptotic representation used for 
w ( z), Eq. (9) is correct when I k • u 12 /k2 » v~. 
vifo and (k· u) 2 « w~e· In this region Eq. (9) 
predicts unstable plasma oscillations.* 

In addition to solution (9), an acoustic solution 
of Eq. (8) can be obtained when the term w~e is 
included but with I s I « I k · u 1. In this case, neg
lecting terms of the order of ..f6 in comparison 
with unity, we find 

s = 1 = w0.o'1• (ku) [w~.- (ku) 2]-'1•, (10) 

which is applicable when w~e - ( k · u )2 > w~eo 113 • 
Thus in a plasma whose electrons have an av

erage speed greater than their thermal speed, the 
acoustic oscillations may become unstable. In 
this case, the energy of the electron motion is con
verted into energy of acoustic oscillations and is 
the source of the instability. We note that a simi
lar instability can occur in a plasma in which part 
of the electrons have a fast drift, i.e., in a plasma 
containing so-called "runaway" electrons. In this 
case, besides the excitation of unstable acoustic 
oscillations, there will be excitation of unstable 
optical oscillations with s given by an expression 
of the form of Eq. (10) but with o equal to the 
ratio of the number of runaway electrons to the 
total number of electrons. 

In conclusion we note that an instability of this 
type appears to have been observed experimentally. 8 

The authors are grateful toM. S. Rabinovich and 
V. P. Silin for their helpful comments. 
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