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The data presented thus indicates that it is only 
possible to elucidate the influence of surface forces 
(Scott) and mean free path (Kuper) if overheating 
of the specimen is avoided. 
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WE have previously shown 1 that the interaction 
of a disk oscillating in rotating helium II with the 
Onsager-Feynman vortex lines leads to a specific 
dependence of the damping upon the rotational ve
locity, with a characteristic maximum2•3 which is 
not to be explained by consideration of the influence 
on the disk of the normal component of the helium 
II alone (even when the mutual friction between 
the normal and superfluid liquids is taken into ac
count). A decisive role in the explanation of the 
formulas derived in reference 1 is played by the 
circumstance that the vortex lines, being perpen
dicular to the plane surface of the disk, lie with 
one end upon this surface. Distorted by the per
pendicular displacement of the surface, they act 
upon it with a force which depends upon their ten
sion. The relation between the tension of a vortex 
line and its circulation, moreover, determines the 
effective viscosity of the superfluid component 
(the quantity TJs in reference 1 ) . 
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From what has been said, it is clear that if the 
disk be replaced by a cylinder whose surface· is 
parallel to the axes of the vortex lines, then the 
possibility of direct interaction of the oscillating 
body with the vortices which form when a super
fluid liquid is rotated is completely excluded. The 
presence of the vortices manifests itself solely in 
mutual friction effects. 

Solving the system of hydrodynamic equations 
for rotating helium II,4•1 for boundary conditions 
corresponding to small oscillations of an infinite 
cylinder rotating together with an unbounded liquid 
about their common axis,* one can readily verify 
that the force acting upon the surface of the cylin
der is wholly determined by the momentum flow 
of the normal component. 

The sum of the moments of the forces acting 
upon unit length of the outer and inner surfaces of 
a thin -walled cylinder of radius R turns out to be 

/f1 = - 2rr:iR3'Y)nD..cp0k [H~1> (kR) I Hi1> (kR) 

- J2 (kR) I J1 (kR)l e1w. (1) 

Here, TJn is the viscosity of the normal component, 
Q and cp 0 are the frequency and amplitude of the 
oscillations of the cylinder, Jp is a Bessel func
tion, H~1> is a Hankel function, and k is the com
plex wave number, determined by the equation 

(2) 
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with Im k > 0. Here vn is the kinematic viscosity 
of the normal component, w0 is the angular veloc
ity of rotation, and f3n and f3s are the coefficients 
for the mutual friction between the superfluid and 
normal components ( cf. reference 1). 

As was to be expected, Eqs. (1) and (2) show that 
the dependence of M upon the rotational velocity 
vanishes for f3n = f3s = 0. Consequently, the influ
ence of rotation upon the damping of the oscilla
tions of a cylinder is characteristic only of helium 
II. Measurements5•6 have confirmed the absence of 
such an effect in a classical fluid. 

Using Eq. (2) it is not difficult to show that over 
a broad range of frequencies w0 and Q and for 
R ~ 1 em the penetration depth of the cylindrical 
waves excited by the oscillations of a cylinder in 
rotating helium II is appreciably less than the ra
dius of the cylinder. This makes it possible to use 
an asymptotic expansion of the cylindrical functions 
for large values of the argument. 

As a result, the damping y' at the surface of a 
unit length of the cylinder is 

, = "'R 3 V~(l-~ 3 \(1_3o0 ) 

I /1 n • '; \ R ' 
(3) 

Where It is the moment of inertia of the cylinder 
(per unit length), o0 = .J 2vn I Q is the penetration 
depth in the absence of rotation, and Pn is the nor
mal component density. Equation (3) is written in 
the linear approximation to the product of 2w0 IQ 
and the mutual friction coefficients. 

To eliminate boundary effects it is convenient 
to measure the quantity ( y2 - y t ) I ( l2 - lt ) , which 
is equivalent to y'; here y2 and y t are the val
ues of the damping for immersion of the cylinder 
to depths Z2 and Zt, respectively. (In addition, 
It should be replaced in Eq. (3) by the moment of 
inertia of the suspended system I, which is pre
sumed to be sufficiently great that the period of 
the oscillations is the same in both stationary and 
rotating helium, and for various depths of immer
sion.) 

It can readily be seen that the ratio of the quan
tities y 2 -y1 as measured in rotating and in sta
tionary helium II is 

(12 -rt) / ("(2 -ri)w,-o = I + W 0 p, B /2 Dp, (4) 

where Ps I p is the relative density of the super
fluid component, and B is the coefficient of Hall 
and Vinen 7 •8 (f3s = - PsBI2p). Equations (3) and 
(4) are also confirmed by experiment.6 

The authors regard it their pleasant duty to 
thank E. L. Andronikashvili and his colleagues in 
the cryogenic laboratory of the Tbilisi State Uni
versity for their constant interest in this work. 

*In solving this problem the necessity of using additional 
boundary conditions for the velocity of the superfluid liquid 
does not arise (cf. references 1 and 4), since its components 
tum out to be proportional to the corresponding components 
of the normal fluid velocity. 
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SEVERAL authors1•2 have discussed the possibil
ity of using artificial earth satellites to measure 
the gravitational frequency shift. However, they 
have considered only the shift due to the earth's 
field. We wish to present a calculation which shows 
that the frequency shift due to the sun's field can 
also be measured with earth satellites. 

The frequency shift due to the sun is 

(1) 

where k is the gravitational constant, M0 = 2.0 
x 1033 g is the mass of the sun and r is the dis-


