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The general effect of a uniform magnetic field on the stability of the equilibrium of a conduct­
ing liquid which is heated from below in a cavity of arbitrary shape is investigated. The time 
variation of the perturbations which arise in the liquid is always monotonic. The critical value 
of the Rayleigh number C~, above which the equilibrium is unstable, increases monotonically 
with the Hartmann number M, so that the inequality in Eq. (4.16) is satisfied. At small values 
of M the critical value of the Rayleigh number is proportional to M2 and the coefficient of pro­
portionality can be computed. The asymptotic nature of the function c0 ( M) as M - oo depends 
on the shape of the cavity and the direction of the field. 

THE most interesting phenomena in magnetohydro­
dynamics occur when energy dissipation is not im­
portant. These effects have been investigated widely 
in recent years. Cases of motion in small volumes, 
in which case viscosity is important, are generally 
considered less interesting. Under these condi­
tions, the magnetic field induces a current in the 
liquid and this current tends to retard the motion; 
in principle, no other additional effects arise. 
Cases of this kind have been considered by Hart­
mann1 (plane Poiseuille flow), Chandrasekhar2 

(convection in a plane horizontal layer ) , Smirnov3 

(convection in a vertical tube heated from below), 
Velikhov4 ( Poiseuille flow and flow between rotat­
ing cylinders) and Regirer5 (convection in a plane 
vertical slit). 

Of the problems which have been considered, the 
convection problems are of special interest because 
of their connection with the theory of hydrodynamic 
stability. The initial state is an equilibrium state 
and the analysis of its stability is much simpler 
than the problem of flow stability. At the same 
time the presence of the magnetic field means that 
the equations of motion are not self-adjoint and 
hence more closely related to typical equations in 
the theory of hydrodynamic stability. If there is 
no magnetic field the problem is extremely simple.6 

Hence a general investigation of the effect of the 
magnetic field on the stability of equilibrium of a 
conducting liquid heated from below in an external 
uniform magnetic field is of interest. 

1. EQUATIONS OF MOTION 

We consider "slow" motion in a conducting 
liquid which is originally in equilibrium in a 
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gravitational field 

(1.1) 

and which is heated from below so that there is a 
constant vertical temperature gradient (as long as 
equilibrium prevails ) 

(1.2) 

The liquid fills a cavity of arbitrary shape which 
is cut into an infinite external solid medium. The 
external magnetic field 

~2 = 1 (1.3) 

produces a current density j and an additional 
magnetic field h in the liquid. 

To the usual convection equations 7 it is now 
necessary to add the Lorentz force; since the 
motion is slow we retain only the linear perturba­
tion terms. Then the equations of motion and the 
heat conduction equation are 

v =- p-1 v p- v curl curl v + :xgyT + (H0 jcp) [jx~]. 

i' = Ayv + '!. \J2T, div v = 0. (1.4) 

In addition we have Maxwell's equations (in which 
the displacement current is neglected) and Ohm's 
law: 

curl h = ( 4~to /c) {E + c-lfl0 [v x ?1} = 4~tj / c, 
h=-ccurlE, divh=O (1.5) 

(a is the electrical conductivity, 11 = 1, and E is 
the electric field) . 

We can eliminate j and E from these equa­
tions, expressing these quantities in terms of h. 
Then the equations which describe the problem 
become 
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v =- p-1 v p- v curl curl v + cxg1 T 

-T (H0 / 4:ro)[curlhx?J. 

T =rAv 1 x v2T, 

h =- (c2 I 4Jtcr) curl curl h + H 0 [v x?J. 
divv = div h = 0. (1.6) 

For the external medium, in these equations we 
set the velocity equal to zero and replace the coef­
ficients x and a by the corresponding coefficients 
in the medium, ~ and a: 

h =- (c2 1 4Jt~) curl curlh, divh = 0. 
(1.6') 

At the boundaries of the cavity the velocity, mag­
netic field, temperature, and normal components of 
the current and heat flow must be continuous: 

v!s = 0, 

n curl hIs= n curl hIs, nvT Is= 'ljDVT ls (1. 7) 

( 11 is the ratio of the heat conductivities of the me­
dium and the liquid). Both T and h vanish at in­
finity. 

We now introduce characteristic units: the char­
acteristic dimension of the cavity Z, H0, and the 
characteristic velocity and temperature, defined by 

T2 = (H0c\2 _A_ 
1 ' 4 "') a.xpcrg . 

Then Eq. (1.6) assumes the following form: 

v =- v p- curl curl v + C"(T + M [curlhx~], 

(1.8) 

PT = Cyv: V 2T, (1.9) 
Nit=- curl curl h + M curl [vxn 
divv = divh = 0; 

PT =v 2 T, Nh=-curlcurlh, divh=O. (1.9') 

The boundary conditions (1. 7) and the conditions at 
infinity remain the same as before. 

We use the following dimensionless quantities 
in these equations: 

P = v: x = x PIx (Prandtl number) 
N = 4 c:vcr I c2 = crN I';, r, = ;I x, 

C2 = cxgAl4 1 vx (Rayleigh number) 

M2 = H~crl2 1 pvc2 (Hartmann number squared) 

(The so-called Lundquist number, which deter­
mines the nature of typical processes in magneto­
hydrodynamics, is MVN. This quantity does not 
contain the viscosity.) 

The linear equations (1.9) do not contain the time 
explicitly so that all quantities may be assumed to 
be multiplied by a function of the form e-A.t; we 
are then concerned with the boundary value prob­
lem: 

f. v = v p -,-curl curl v- CyT- M [curl hx~], 
i,py = - Cyv - v 2 T, 

/,Nh =curl curl h- M curl [v ?J. 

divv = divh = 0; 

1)5 T =- \" T, 1JJ li =curl curl h, 

(1.10) 

(1.10') 

with the boundary conditions (1. 7) and the condition 
T = h = 0 at infinity. The sign of the real part of A. 
(the eigenvalue of the boundary-value problem) de­
termines the stability: stability obtains when Re A. 
> 0. 

In what follows we will be concerned with inte­
grals which are. taken over all space. These are 
written in the form of sums of integrals over the 
volume of the liquid and the external volume whose 
integrands differ from each other by the obvious 
substitution of P by P and so on. The boundary 
conditions allow us to use Gauss' theorem over all 
space since the integrals over the surface of the 
interface always cancel. 

2. STABILITY IN THE ABSENCE OF A MAG­
NETIC FIELD 

This problem has been investigated by one of 
us. 6 In the absence of a field M = 0 and Eq. (1.10) 
can be simplified: 

i,v = v p +curl curl v- CyT, 

Pi.T =- Crv- v2T, div v = 0; (2.1) 

(2.1') 

The system of equations in (2.1) and (2.1') is self­
adjoint and the eigenvalues A. and eigenfunctions v 
and T are real. The equations in (2.1) are the 
Euler equations for the variational problem 

J [v, T] = ~ ~{(curl v)2 1 (v Tf- 2 CyvT} dV 

1 .\ - ---,- T ·r. (v T)2 dV = extr, 
.! 

1\[v,T]= ~ ~{v2 1 PP}dV++·~ ~PT2dV= !, 

div v = 0 (2.2) 

with the earlier conditions (1.7), while the A.'s are 
stationary values of the quotient: 

), = extr (J I K). (2.3) 

The last situation, which does not appear in 
problems of hydrodynamic stability, makes the 
analysis much easier. For a given C there ex­
ists an infinite set of solutions 

},n; {v,, Tn, Pn}, fl = 0, I, 2, ... , (2.4) 

which can be designated in order of increasing A.. 
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These solutions are orthogonal to each other in 
the following sense: 

~ ~ {curl VmCUrlv + V' T m • V' T n- CyvmT 

1 \ - - -+ 2 '"ll ) V' T · V' T n dV = 'Anomn· (2.5) 

It is apparent that J > 0 when C = 0, that is 
to say, all the A.n > 0, and the liquid is stable. By 
means of a variational technique (2 .3) it is shown 
in reference 6 that when C is increased all the 
A.n are diminished, i.e., the damping of the per­
turbations becomes weaker and for some value 
C = C0 the eigenvalue A.0 vanishes. When C > C0, 

the zeroth motion increases in time and the liquid 
becomes unstable. With a further increase in C 
we obtain successive negative values A.1, A.2, etc. 

In order to find the critical number C a we 
solve Eq. (2.1), setting A.= 0: 

CyT = V' p + curl curl v, Cyv =- V'2T, divv = 0; 
(2.6) 

V' 2 T = 0 (2.6') 

with the earlier boundary conditions. Equations 
(2.6) and (2.6') are also self-adjoint and are equiv­
alent to the variational problem: 

I [v, T] ={-~{(curl v)2 + (V' T)2} dV 

1 \ - -+-z '"ll )(V' T)2dV=extr, 

Q[v,T]=~yvTdV=1, divv=O. (2. 7) 

The eigenvalues for this problem are given by 

C = extr (/I Q). (2.8) 

We shall call the solutions of this problem the 
critical motions, enumerating them by Greek sub­
scripts in order of increasing C: 

(2.9) 

so that C~ is the value of the Rayleigh number at 
which perturbations characterized by n < a in­
crease, the perturbation characterized by n = a 
is neutral, and perturbations characterized by 
n > a are damped. The critical motions satisfy 
the following orthogonality conditions: 

~ jVa.TildV = lla.ll• 

~curl va. curl vildV = Ca.oa.ll• 

~ V' Ta.· V' TildV + '"ll ~ V' Ta.. V' Til dV = Ca.Oa.ll· (2.10) 

It is assumed that Eq. (2.9) defines a complete set 
and that this set can be used for expansion of any 
v, T, and p. 

3. PERTURBATIONS IN A MAGNETIC FIELD 

The system of equations in (1.10) for perturba­
ti'ons in a magnetic field is not self-adjoint and it 
is not immediately apparent whether or not the 
eigenvalues are real. From Eq. (1.10) it is easy 
to derive the integral relation 

('A- 'A') {~ [v' v + PT*T- Nh' h] dV 

(3.1) 

which, strictly speaking, does not prove that the 
A. are real, although it does suggest that such is 
the case. It is possible, however, to expand the 
eigenvalues and eigenfunctions in powers of M 2 

and these expansions are real. 
These expansions are obtained as follows. When 

M = 0 Eq. (10) has a set of solutions given by (2.4). 
Physically it is clear that this set must be com­
plete in the sense that any pair of functions { v, T} 
can be expanded in functions of the set: 

(3.2) 
n 

with the same coefficients an in both expansions. 
We may note that a set of several Vn (or T n) 

is overcomplete for any v; hence any v can be 
expanded in different ways in the Vn, depending 
on the T to which this v is related. The reason 
such expansions are real is clear from the fact 
that any initial (v, T) vary in accordance with 
Eq. (1.9); i.e., the expansions must consist of 
terms which vary exponentially in time. 

In Eq. (1.10) we now write 

.,_='An+ M2t-<1l + ... + M2k/..<kl + ... , (3.3) 

{v, T,p}= {vn,Tn,Pn} 

~ M2 (1) + I M2k (k) + l { T } (3 4) + ~ [ am ... T am . . . Vm, m. Pm ' • 
m.Pn 

(3.5) 

Assuming that all terms of these expansions are 
determined to order ( k- 1), we now show that it 
is possible to determine terms of order k. If we 
substitute the expansions (3.3) and (3.4) in the third 
equation of (1.10) and consider M 2k-i terms we 
have 

N'Anh<1l- cur:l curlh<1l =- curl[vnx~] (k = 1); 

N'Anh<kl- curl curlh<kl =-curl 2} a~-1) [vmx.~] 
m+n 

- [f-(1)h(k-1) + ... + ),(k-1) b(ll] (k > 1). (3.6) 

The right sides of these equations are assumed 
to be known and, solving Eq. (3.6) with the imposed 
boundary conditions, we obtain the h(k). We then 
substitute the expansions in (3.3) and (3.4) and the 
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h(k), which are now known, in the remaining equa­
tions of (1.10) and consider M2k terms. In this 
way we obtain 

AkVn + ~ [A(k-1) a~+ ... + Ana~)] Vm 
m+n 

= ~ a'/:.> [V' Pm + curl curl Vm- CyT ml 
flt+n 

-[curl h<k>x ~]. 

P { A(k)T n + ~ p,<k-1) a~/+ ... +Ana~)] T m\ 
m+n J 

=- ~ a~> [Cyvm + Y' 2 T m] (3. 7) 
m+n 

and similar equations in the external medium. 
Multiplying Eq. (3. 7) by 

{Vn, Tn} 

and integrating, by virtue of the orthogonality con­
dition (2.5) we obtain 

)..(k) = ~curlb<kl [vnx ~] dV, 

then, multiplying by 

(vm, T m} (m =/= n) 

and integrating we obtain 

(3.8) 

[A(k-1) a!1.> + ... +Ana~>]= Ama~) +~curl h(k) [vmx~] dV, 

whence 

a~> = A ~A {A <k-1) a!1.> + ... + A (1) a~-1) 
m n 

(3.9) 

By this method it is then possible to compute 
successively all terms of the expansions in Eqs. 
(3.3) to (3. 7); it is obvious that when M rc 0 the 
solutions are real. We may note that the following 
relation follows from Eqs. (3.3) and (3.8): 

).. = )..n + M ~curl h [Vn x ~] dV, (3.10) 

which can also be derived directly from Eq. (1.10). 
Taking account of the fact that {A., v, T} are 

real, from Eq. (1.10) we find that 

), = {~[<curl v) 2 + (V'T)2- (curl h)2 

-2 CyvT- 2M curl h [~xvJ] dV 

+ ~ ["'J (V' T) 2 - (curl h) 2] dV} { ~ [v2 + PT2- N h2] dV 

+ ~ ["flP T2 - N2h 2J dV r1
• (3.11) 

and Eq. (1.10) is obtained by the variation of the 
numerator of this expression with the denominator 
held constant. 

We cannot show starting directly from Eq. (3.11) 

that in a magnetic field there will be a critical Ray­
leigh number C~ at which the motion becomes un­
stable, although this result is almost obvious phys­
ically. But if stability is lost at the critical value 
C0, the smallest A. is zero. Hence it is possible 
to investigate Eq. (1.10) directly with A. = 0, as­
suming that M is given. Thus we can obtain the 
spectrum of critical C a ( M). 

4. STABILITY IN A MAGNETIC FIELD 

Writing A. = 0 in Eq. (1.10) we obtain the equa­
tions for the critical motions. In these equations 
it is convenient to introduce the current 

j =curl h, (4.1) 

so that the equations assume the form 

CyT = V'p +curl curl v- M fix~], Cyv =- V' 2T, 

curl {j- M [vx~]} = 0, div v = div j = 0. (4.2) 

In the external medium 

V' 2 T = 0, curl j = 0, divj = 0. (4.2') 

The boundary conditions remain the same as before 
except that we must take account of the fact that the 
normal component of the current is continuous. 

It is easy to show that Eq. (4.2) is obtained by 
solution of the following variational problem: 

I [v, T, j] =+~{(curl v)2 + (V T)2 - j2- 2 Mj [pvl} dV 

++~ {"'J (V'T)2 -P} dV=extr; 

Q [v, T] = ~ yvTdV = 1, div v =div j = 0 (4.3) 

with the same boundary conditions as before. The 
quantity C ( M) can itself be expressed in terms 
of the extreme of the function v, T, j by use of 
any of the following formulas: 

C(M) = /[v. T,j]/Q [v, T] 

= { ~ (V' T)2 dV + "'J ~ (V' T) 2 dV} I yvT dV 

= ~ [(curl v)2 + Fl dV I~ yvTdV, (4.4) 

where the following relations obtain for the critical 
values of v, T and j 

~ j2dV = M ~ j [vx~) dV, 

~[(curlv)2 +fJdV=~(V' T) 2 dV+"'J ~ (V' T) 2 dV. (4.5) 

We now compute the derivative of C (M) with 
respect to M from the first relation in Eq. (4.4). 
It is apparent that it is necessary to differentiate 
only with respect to M, which appears explicitly 
in the integral I, since the result of differentiation 
of the functions v, T and j gives zero by virtue 
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of Eq. (4.2). Consequently 

dC (M) f dM = ~ j [vx ~] dV I~ "(VTdV 

or, from Eqs. (4.5) and (4.6), 

(4.6) 

~ ~~~ = ~j2dV I { ~ (V' T) 2 dV + "IJ ~ (V f) 2 dV}. (4. 7) 

It follows from Eq. (4.5) that 

0 < ~ j2dV I { ~ (V T) 2 dV + "IJ ~ (V T)2 dV} 

= 1- ~(curl v) 2 dVj E (V T) 2 dV+ "IJ ~ (V' T) 2 dV} < 1, 

whence 
(4.8) 

0 < d InC I d In M < 1. (4.9) 

At small values of M the dependence of C ( M) 
on M can be determined easily by a perturbation 
method.* We consider the change, under the effect 
of a weak magnetic field, in the critical motion 
(v0, T0, p0, h0 = 0) which corresponds to the small­
est critical Rayleigh number C~ ( 0). We expand 
all quantities in terms of the critical motion (with­
out the magnetic field ) (2. 9): 

V=Vo+M2 ~ i3o:Vo:···• 
o:+O 

0: 

P = Po + M2 ~ r:J.pa. + · · ·, 
0: 

Co (M) =Co (0) +!::..C. (4.10) 

(In the summation for v we neglect the term with 
a= 0, which is equivalent to a change of normali­
zation.) Substituting in Eq. (4.2) and keeping only 
the lowest power of M we have 

M2 [- ~ \'1to:Pa:-~ ?a: curl curlvo: + C0 (0) 2.; Ba:IT "'J 
:x. a.=FO a. 

0:</'0 0: 

(4.11) 

The current may be assumed known since in deter­
mining the potential cp from div j = 0, we get 

(4.12) 

It is apparent that the current is proportional to M. 
In order to compute ~C we multiply Eq. (4.11) 

by v0 and T0 respectively, integrate over all 
space, and add. By virtue of the orthogonality 

*This calculation has been carried out by S. V. Ust'­
Kachkintseva at the Perm University. 

condition (2.10) we have 

!::.. C + M2C0 (0) 80 + M ~ [jx ~] V 0dV = 0, 

t::..C- M 2C0 (0) 80 = 0, 
whence 

It follows from the last equation of (4.11) that 

+ ~ j [j + Vcp] dV = + ~ jZdV- + ~ cp div j dV, 

i.e., 

(4.13) 

(4.14) 

The current in this expression is computed from 
the velocity v0, normalized in accordance with 
Eq. (2.10). Thus, ~c ..... M2. 

If we return to the conventional units, in accord­
ance with Eqs. (1.8) and (2.10) 

!1CJC0 (0)=+~(F/o) dV j~vp(curlv) 2 dV, (4.15) 

so that the change in the critical Rayleigh number 
in the magnetic field is determined by the ratio of 
the Joule heat to the viscous dissipation. 

The function C0 ( M), which is positive for M 
= 0, first increases as M2 and then continues to 
increase monotonically, so that 

dC0 (M) / dM < C0 (M) I M. (4.16) 

The inequality given here cannot become an equal­
ity as this would mean that the cur 1 of the velocity 
vanishes everywhere, (zero velocity everywhere), 
which cannot be the case. Consequently, the curve 
c0 ( M) at each point intersects a line drawn to 
this point from the origin of coordinates and can­
not touch this line at any other point. When M 
-co the quantity c0 cannot increase faster than 
M but may also approach a constant. This follows 
from the simple example of convection between two 
parallel vertical planes. 5 When the external mag­
netic field is vertical it has no effect on the zeroth 
critical perturbation, for which the velocity is also 
vertical, and the critical value C0 is independent 
of M. In the case of a horizontal field, however, 

Co (M) = 1t2 I I + M2 / 1t2]'i•, 

C0(M) ~ 1tM for M--+ oo • 
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