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The spectra of y rays accompanying the capture of thermal neutrons are calculated. The 
calculations are performed for dipole y radiation and two types of dependence of the nuclear 
level density on energy. The results for the level density are compared with data derived 
from other experiments. 

THE capture of a thermal neutron by an atomic 
nucleus leads to the formation of a relatively 
strongly excited nucleus with excitation energy 
6 - 8 Mev. In the case of heavy nuclei with atomic 
weight A > 100, owing to the great density of the 
levels, the transition from the excited state that 
results from the capture of a thermal neutron may 
proceed via a large number of different paths. 
Accordingly, the overwhelming portion of the y 
transitions in such elements occurs in a portion 
of the spectrum that is still unresolved by modern 
measurement procedures. In the case of light nu
clei, and in the case of heavy close-to-magic nuclei, 
the y -ray spectrum is almost a line spectrum ow
ing to the small level density .1 In this paper we 
consider only continuous spectra. Experimental 
data have shown that the spectra of y quanta in 
heavy nuclei change relatively little from nucleus 
to nucleus. One can therefore assume that the 
spectrum of the emitted quanta is determined es
sentially by the general laws of the distribution of 
the density of the nuclear levels and by the multi
polarity of the radiation transition, and depends 
little on the specific properties of the matrix ele
ments of the transitions. 

In accordance with the statistical theory, we 
assume that the relative probability of emission 
of a y quantum with energy E by a nucleus, lo
cated in a certain state with energy u, is given 
by the following formula: 2 

w (u, E) = £>< p (u- E) f n (u), (1) 

where p ( u -E) is the density of the final states 
of the nucleus. It is assumed that the distribution 
of the y quanta is determined only by the energies 
of the initial and final states of the nucleus. One 
can see certain justification for this in the fact that 
the probability w ( u, E) has the meaning of a rela
tive transition probability, averaged over a suffi-

430 

ciently large number of initial and final nuclear 
states. The distribution ( 1) is normalized to a 
total decay probability of unity, from which we 
determine the normalizing factor n ( u ) 

ll 

n(u) = ~E"p(u-E)dE. 
0 

(2) 

The average transition matrix element, which we 
consider to be a constant, is not contained in Eq. (1). 
The constant K has a value 2l + 1, where 2l is 
the multipolarity of the radiation. 

To calculate the total y -ray spectrum of the 
nucleus it is necessary to sum the spectra of all 
the stages of the cascade. This problem is solved 
most simply when the energy in the emitted quanta can 
be considered small compared with the excitation 
energy of the nucleus. The spectrum was calculated 
in this approximation by Nosov and one of the au
thors of the present paper ( V. S.) .1 This case is 
char.acterized by the emission of a large number 
of quanta during de-excitation of the nucleus. Con
sidering the number of quanta to be a continuous 
quantity, U is possible to obtain the following ex
pression for the y -ray spectrum: 

u, 

'I (E) dE = dE~ w (u, E) _!u . , 
£ E (u) 

(3) 

where v (E) dE is the number of quanta whose en
ergy is in the interval E, E +dE, emitted by the 
nucleus, u0 is the initial excitation energy, and 
E ( u) is the average energy of the y quanta of 
energy u emitted by the nucleus: 

u 

E (u) = ~ Ew (u, E) dE. (4) 

The total number of quanta Ti is in this approxi-
mation 

U 0 U 0 

~ = ~ v(E)dE = ~ dujE (u). (5) 
0 0 
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Putting in (1) p =Po exp {s (u) }, where S (u) 
is the entropy of the nucleus, we obtain 

E (u) ~ (x + I) T (u), 

u, 
- \ du S (uo) 
v (uo) = ~ (x + 1) T (u) = x + 1 · 

0 

The mean squared fluctuation of the number of 
quanta is 

(6) 

(7) 

(8) 

In formulas (6) and (7), T (u) is the nuclear tem
perature, T (u) = du/dS. 

A comparison has been made previously1 of the 
experimental data on the spectra of the y rays that 
accompany the capture of thermal neutrons; the 
calculations there were based on formulas (3) - (7). 
These formulas· yield a fairly good qualitative ap
proximation, but their accuracy when applied to 
capture of thermal neutrons is insufficient, owing 
to the small number of emitted quanta ("' 3 - 4 
quanta per capture). The average quantum energy 
is "' 1. 5 - 2 Mev, i.e., it is far from small com
pared with the nuclear excitation energy. 

A more accurate calculation of the y -ray 
spectrum can be made by foregoing one of the 
premises that underly the derivation of Eqs. (3) 
- (7), namely that the change in nuclear energy 
upon emission of the y quanta is small, and the 
resultant replacement of the summation of indi
vidual decay chains by integration over stages, 
each of which is characterized by a certain aver
age nuclear excitation- energy. Such a calculation 
can be made on the basis of the kinetic equation 
that describes a multistage process of y emis
sion from the nucleus. 3 In our case, when the 
emission of quanta is the only process, this equa
tion has the following form 

ayk (u, t) I at = ~· Yk -1 (u', t) r (u') w (u', u'- u) du' 
u 

- f (u) Yk (u, t), (9) 

where Yk ( u, t) is the probability of finding k 
quanta and the nucleus in the state with energy u 
at the instant t in the nucleus-plus-photons sys
tem. In Eq. (9) r (u) is the decay probability per 
unit time of a nucleus with energy u, multiplied 
by ti. 

During the initial instant of time, t = 0, we 
have 

(10) 

( Oab is the Kronecker symbol and o stands for the 
o function), since at t = 0 there were no quanta in 
the system, and the nucleus was in the initial state. 

One can obtain, on the basis of (9), a simple equa
tion for a certain quantity directly related with the 
y -spectrum of interest to us. To derive this equa
tion we introduce the function N (u, t ), the proba
bility of having at the instant t a nucleus with en
ergy u with any number of quanta: 

oc 

N (u, t) = ~ Yk (u, t). (11) 
k=O 

The function Yo ( u, t) satisfies the following dif
ferential equation [see (9)]: 

ay0 (u, t) I at= - f (u) Yo (u, t). (12) 

Taking this into account, we obtain, summing both 
halves of (9) over k, the following equation for 
the function N ( u, t) 

u, 

aN (u, t)! at=~ r (u') w (u', u'- u) N (u', t) du' 
u 

- f (u) N (u, t). (13) 

Analogously we obtain from (10) the initial condi
tion 

N (u, 0) = o (u- u0). (14) 

We now denote by v ( E, t) the number of quanta 
with energy E in the system at the instant t. 
The function v ( E, t) satisfies the following equa
tion 

u, 

av (E, t) I at=~ N (u', t) r (u') w (u', E) du', (15) 
E 

a solution of which, satisfying boundary condition 
v ( E, 0) = 0, is the function 

u, t 

v (E, t) ==; ~ w (u', E) du' ~ f (u') N (u', t') dt'. (16) 
E o 

The function v ( E, t} at t = oo yields the number 
of quanta of energy E, emitted by the nucleus dur
ing the decay process: 

U0 CC 

'I (E)= 'I (E, (X))=~ w (u', E) du' ~ r (u') N (u', t) dt. (17) 
E o 

Let us now find the equation satisfied by the 
function 

00 

Z (u) = ~ f (u) N (u, t) dt. 
0 

For this we integrate both parts of (13} with re
spect to time: 

"• 
N (u, :XJ)- ,"/ (u, 0) = ~ Z (u') w (u', u'- u) du'- Z (u). 

u u~ 

This is precisely the sought integral equation for 
the function Z (u). Actually, using the formula (14} 
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and uoting that N ( u, oo) = 0 for all u > 0, we find 
u, 

Z (u) = ~ w (u', u'- u) Z (u') du' + o (u- Uo)· (19) 
u 

The function v (E) can be written 
u, 

v (E)=~ w (u', E) Z (u') du'. (20) 
E 

The function Z ( u) gives the probability of the nu
cleus passing through the state with energy u dur
ing the process of emission of the y quanta. Ex
pressions (3) and (20) for. the y spectrum coincide 
to the same extent that the funclion Z ( u) is equal 
to 1/E (u). 

It will be more convenient to transform (19) and 
(20), introducing a new function t ( u) = Z [ u -. o ( u) 
- u0 ). Then (19) and (20) become 

II, 

C (u; = ~ w (u', u'- u) C (u') du' + w (u0 , u0 - u), (21) 
u 

u, • 

v (E)= w (u 0 , E)+~ w (u', E) C (u') du'. (22) 
E 

The first term in (22) corresponds to the y quanta 
emitted from the initial states of the nuclei, while 
the second represents the spectrum of the succeed
ing quanta. 

By using the method of successive approximation 
we obtain from integral equation (21) the well known 
expression for the y-ray spectrum 

u0 - E 

v (E) = w (u0 , E)+ ~ w (u 0 , E') w (u0 - E', E) dE'+ ... , 

0 ~~ 
where each term of the series represents respec
tively the probability of emission of a quantum with 
energy E by the first, second, etc term in the 
chain. The effective number of terms in this series 
depends on E. When E ~ 1 - 2 Mev it is found to 
be too large and expression (23) cannot be used in 
practice to calculate the spectrum, owing to the 
need for evaluating integrals of high multiplicity. 

In that important case, when the function 
w ( u, E) is given by expression (1), the integral 
equation (21) can be transformed into a differential 
one. For this purpose, after first inserting into (21) 
the expression (1), for the function w(u, E), we 
divide both halves of the equation by p (u) and dif
ferentiate K + 1 times with respect to u. As a re
sult we obtain a differential equation of order 
K + 1 for the function t ( u ) : 

d><+If (u) 1 du><+I = (-l)"+lx! f (u) p(u) In (u), (24) 

where f ( u ) = t ( u) I p ( u) and the boundary con
dition at the point u = u0 is: 

1 0 for ), = 0, ... , x- 1, 
(dl'f (u) / dul·)u = u, = I (- 1 )"x! In (uo) for }, =A, 

(25) 

In certain simple cases (24) makes a direct de
termination of t (u) possible. For a qualitative 
determination of the properties of the function t 
we note that the function n ( u) has a value 
K ! TK+ 1 p ( u) for large values of u, when u » KT, 
and has a value uK+ 1/(K + 1) as u ___.. 0 (we as
sume here that the level density is a continuous 
function, starting with u = 0). Taking this into 
account, we can find with the aid of (24) that t ( u) 
behaves like 

w (u0 , u0 - u) ::::o (u 0 - u)"p (u) I A! T (uo) 

at values of u close to u0, which satisfy the in
equality 

u0 - E (u0):::::; u0 - (A + 1) T (u 0) ;$: u ~ u~, 

like c/u (where c is a constant) as u ___.. 0, and 
like 1/E ::::; 1/ { ( K + 1) T ( u)} in the intermediate 
region, where u » T ( u). These properties of 
t ( u) are obvious from the point of view of the 
aforementioned physical meaning of the function 
z ( u) [see Eqs. (3) and (6)]. In practice the re
gion of energies in which t ( u) can be represented 
as [(K+1) T (u))-1 is small, and this causes (3) to 
be inaccurate. A plot of the function t ( u) is 
shown in Fig. 6 (curve 1; the variables u and v 
are identical for curve 1). 

The divergence of the function t ( u) as u ___.. 0 
signifies that nuclei with small excitation energies 
accumulate during the process of emission of quanta. 
As a consequence, the spectrum of the y quanta 
emitted by a nucleus will also diverge as 1/E as 
E ___.. 0. This circumstance is common to all cases 
in which the energy density can be considered con
tinuous, starting with small values of the energy. 
One can expect such a situation to correspond most 
closely to the case of odd-odd heavy nuclei, where 
the presence of two odd unpaired particles causes 
the level density to increase more or less uniformly, 
starting directly with the ground state of the nu
cleus. In even-even nuclei the pairing of the par
ticles leads to the occurrence of a gap between the 
ground and the first excited state. For nuclei of 
medium atomic weights this quantity ( ~) is equal 
to 1.0 or 1.2 Mev. For simplicity we shall assume 
that in an even -even nucleus ( Pe) there are no 
levels at all below an energy ~. and that above 
this energy the level density is determined by the 
same law as in the case of odd -odd nuclei ( Po ) , 

i.e., we take Pe in the form 
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(0 for u = ti, 
Pe(u) = lPo (u-ti)= p0 p(v) for u ;:> ti, (26) 

where v is the excitation energy of the even nu
cleus, measured from the gap: v = u -.t.. The func
tion p ( v) is normalized such that p ( 0) = 1. 

In the presence of a gap in the spectrum of the 
nuclear levels, radiative transitions in even nuclei 
can be divided into two groups, since a high-energy 
transition into the ground state ( E = u) is also pos
sible from each excited state of the even-even nu
cleus, along with transitions to excited states with 
energies u > .t. ( E < u - .t.). Transitions of the 
former type will be called type A transitions, while 
those of the latter type will be called type B (see 
Fig. 1). 

--------

FIG. 1. Qualitative transition 
scheme in an even-even nucleus. 

The function w (u, E) in the case of an even
even nucleus can be written in the following form 

u.·e (u, E)= u·A + U'B, 

w A= E3p (u- E -ti) / n* (u), 

WB = rxE3o (u- E) in* (u). 

The normalizing factor 
u 

n' (u) = ~ { £3p (u - E- ti) + :xo (u- E)} dE 
0 

v 

= :x (ti _:__ v)3 + ~ E 3p (v- E) dE. 

(27) 

(28) 

(29) 

(30) 

The constant a= (M~/M~) p01, where MB and 
MA are the matrix elements for type Band type A 
transitions. We assume here that both type A and 
type B transitions are dipole transitions. In addi
tion, it is assumed, as above, that-the mean square 
of the matrix element for type A transitions is in
dependent of the energy. 

If we now introduce instead of the function t ( u) 
the function 

(31) 

it is easy to show that both Eq. (21) and Eqs. (24) 
- (25) remain valid for the function t (v), pro
vided the function w ( u, E ) is replaced by 
WA (u, E), and we put in the latter u = .t. +v, 
while the function n ( u) is replaced by a function 
n* (v), of the form 

n* (v) = :x (ti + v) 3 + n (v), 

where n (v) is given by Eq. (2). We obtain 
v, 

~ (v) = ~ WA.(v', v'- v) ~ (v') dv' + WA (v0 , V0 - v), 
0 

(32) 

(33) 

The y -quantum spectrum of an even-even nucleus 
is written in the form 

ve(E) = WA (u0 • E)+ 'lA (E)+ 'IB (E), (34) 

where w A ( u0, E) is the spectrum of y quanta 
emitted by a nucleus in the initial state (in this 
term we can neglect direct transitions from 
the initial state of the nucleus to the ground 
state); 

VB (E) = :x£3 [C(v) In* (v)]v=E-~ (35) 

is the y spectrum of type B transitions, and 
v, 

'lA (E) = ~ (E3p (v- E) In* (v)) ~ (v) dv 
E 

(v0 = u0 - ti) 
(36) 

is the y spectrum for type A transitions. The 
term VB (E) in (34) is taken into account when 
E ~ .t.. Inasmuch as it is assumed that in an even
even nucleus at energy u > .t. the energy-level 
density coincides, accurate to a non-essential con
stant factor, with the level density in the odd nu
cleus, and the initial energy is greater than that 
of an odd -odd nucleus by exactly the amount .t., 
then* the solution of the Eq. (21), the function 
t ( u ) , and the photon spectrum (22) is obtained 
for the odd-odd nucleus as a particular case of 
Eqs. (34) and (36) with a = 0. Here the variable 
v should be considered only as the excitation en
ergy of the odd-odd nucleus, measured from the 
ground state .t. = 0. 

The presence of type B transitions in a nucleus 
with a gap can be readily anaiyzed qualitatively. 
Actually, the presence of type B transitions leads 
first to a weakening of the accumulation of nuclei 
with energy close to .t.: the function t ( v) re-

*Actually the difference in the neutron binding energies in 
even-even and odd-odd nuclei somewhat exceeds !'!, which is 
defined as the size of the energy gap in the level spectrum of 
the even-even nucleus. This is not significant, since the y-ray 
spectrum depends relatively little on the initial excitation 
energy. 
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mains finite at a ~ 0 as v- 0. Accordingly, 
the function v A (E) vanishes as E - 0. This 
reduction in the number of low-energy photons 
is compensated by a corresponding increase in 
the number of transitions with energy E > 6. (see 
below, Fig. 6). 

The parameter a can be roughly estimated by 
specifying the width of the energy interval o, 
0 < v < o, in which type B transitions are most 
probable. This obviously occurs when the first 
term in the expression for n* (v) [formula (32)] 
exceeds the second. By equating the two terms, 
we obtain a relation between the parameters o 
and a, from which we find 

IX.= n (o) 1 (L\ + 0)3. (37) 

To obtain tentative values of the parameters we in
dicate, that, according toEq. (37), the value o"" 1 
Mev corresponds to a"" 1 Mev, while o"" 0.2 
Mev corresponds to a"" 0.001 Mev. 

The function n (v) is a rapidly increasing func
tion of v. Therefore when v ~ o the first term in 
(32) is negligibly small compared with the second. 
As a consequence, the spectrum of an even-even 
nucleus will differ substantially from that of an 
odd-odd nucleus only in the interval 0 < E < o, 
where the spectrum of the even -even nucleus is 
characterized by a smaller number of quanta, as 
well as in the interval 6. < E :S 6. + o, where the 
spectrum of the even -even nucleus will contain an 
additional contribution due to type B transitions. 

Let us proceed now to a report of the results 
of the calculations and compare them with the ex
perimental data. To calculate the y -ray spectra 
we integrated Eqs. (24) and (33) numerically, using 
the Moscow State University "Strela" electronic 
computer. Two expressions were used for the level 
densities of the nucleus [the function p ( v)) 

p (v) = exp (vI-r), -r = const, (38) 

p (v) = exp Y av, a= const. (39) 

In the first calculations we used (24) and (25) 
to find the function t ( v). This differential equa
tion was solved with automatic interval selection, 
insuring accuracy not less than 0.1 %, using a stand
ard program based on the Runge-Kutta method. 
After compiling a program for solving integral 
equation (33) by the Euler broken-line method, all 
the calculations were performed with the integral 
equation. An interval 0.2 Mev was chosen, since 
a comparison of the solutions of the integral equa
tion with the previously obtained solutions of the 
differential equation had shown that such an inter
val insures the stipulated accuracy of 0.1%. Simul-

taneously with solving an integral equation, we 
evaluated the integral (36), and the functions 
w (v0, E) and VB (E). These functions, together 
with the function /; (v) and n* ( v), were obtained 
from the computer for points from 0.2 to 6.4 Mev 
every 0.2 Mev. The parameter v0 was taken in 
all cases the same, 6.4 Mev, corresponding approx
imately to the average neutron binding energy· in 
odd-odd nuclei. In most calculations a value of 
1.2 Mev was used for 6., corresponding approxi
mately to the position of the peak in the experimen
tal spectra of even-even nuclei (see below). Values 
in the interval from 0.4 to 2.5 Mev were taken for 
T in (38), and values in the interval from 2 to 30 
Mev-1 were used for the parameter a [Eq. (39)]. 
The constant a was taken to be 0, 1/1000, 1/400, 
1/32, and 1/2 Mev. 

v(EJI 

1.5r 

1.0 I 

I 
I 
\ 
\ 
\ 

0.5 \ 
\ 

\ 
\. 

' ....... = ------

FIG. 2. Spectra of y quanta, calculated for a level density 
as given by (38). The values of the parameter T (in Mev) are 
indicated in the diagram (CX,= 0). 

Figure 2 shows several spectra of odd nuclei 
( a = 0), calculated by means of (38) for level den
sities at certain values of the parameter T. Fig
ure 3 also shows several theoretical spectra of 
odd nuclei, calculated for a level density as given 
by Eq. (39). 

The dotted curve of Fig. 2 shows the photon 
spectrum for T = co (or a = 0). This spectrum 
was obtained from an analytic solution of the dif
ferential equation (24) and from an evaluation of 
the integral VA (E), [Eq. (36)], which are possible 
when p = const. As shown in the paper by Groshev 
et al.,' the best agreement with experiment is ob
tained at T = 0.8 Mev in the case of (38) or a 
= 15 Mev -t for the case of (39) [corresponding 
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FIG. 3. Gamma spec· 
tra calculated for a level 
density as given by Eq. 
(39). The curves are la· 
beled with values of the 
parameter a (in Mev-') 
(CY. = 0). 

to this value of a is an initial nuclear tempera
ture T(} = (4u0 /a) 112 :::::: 1.3 Mev]. Such a ratio be
tween the "equivalent" values of the parameters T 

and a is quite natural, if one considers that the 
average nuclear temperatures should be close. 

In exactly the same manner it is possible, for 
other values of T, to make the curves v (E) ob
tained in the cases (38) and (39) close to each other 
by suitable choice of the parameter a. There is, 
however, a slight qualitative difference between 
the spectra shown in Figs. 2 and 3. The spectra 
calculated for an exponential density have a char-

I! 
, I 
I, 

I'' 
I : 

I\ 
I \ 

I 

\ 
\ 
\ 
\ 

FIG. 4. Component parts of the complete y spectrum [see 
(35)]. The solid curves correspond to a.= 0 for the level den
sity given by (38) (T = 0.8 Mev); the dotted lines are the same 
for the case of (39) (a = 15 Mev-'), while the dash-dot curve 
corresponds to a.= 0.5 Mev and T = 0.8 Mev. 

acteristic inflection in the region of E "" 1 Mev. 
There is no such inflection in curves shown in 
Fig. 3 [where the density is taken from (39)]. The 
inflection is due to the fact that the first term in 
(34) is a bell-shaped curve (see Fig. 4), and the 
second term v A ( E ) is a monotonically decreas
ing function. In the case of version (39), owing to 
the greater dependence of the level density on the 
energy at u ~ 1 Mev, the spectrum v A ( E ) is 
greatly enriched by soft quanta, and the presence 
of the maximum in the function w (u0, E) does 
not appear explicitly in the form of the summary 
spectrum. 

The presence of an inflection at E "" 1 Mev in 
the spectra of all the investigated deformed odd
odd nuclei4 is an indication that in these nuclei the 
level density increases at low energy ( ~ 1 Mev) 
more smoothly than exp .fau . It is interesting to 
note that no such inflection is observed in the spec
tra of spherical nuclei. 

FIG. 5. Spectra of even· 
even nuclei, calculated for 
level densities of (38) 
(T= 0.8 Mev): curve 1-at 
a.= 0, 2- a.= 0.5 Mev, 
3- <l= 1/400 Mev, 4- a. 
taken in the form of a step 
(curve 1 of Fig. 7), <¥1 

= 1/400 Mev, Cl2 = 0.5 Mev, 
v* = 0.4 Mev. 

v(E) 

We see by comparing the curves shown in Fig. 
5 that in the quantum energy region E ~ 5 Mev the 
contribution of the function v A ( E ) to the total 
spectrum is quite small ( < 10% ). Radiative tran
sitions from such an energy are almost exclusively 
transitions from the initial state. Their average 
intensity is approximately 

w (u0 , u0) z u~ p (0) / n (u0 ) z u~! 6't4 p (u0) z 0.5%, (40) 

and differs little from the experimental value 
("'0.5-3%). 

Figure 5 shows the y spectra calculated with 
the aid of (32) - (36) for a r< 0 (even-even nuclei) 
and T = 0.8 Mev (exponential energy dependence 
of the level density). Curves of t functions for 
these values of the parameters are given in Fig. 6. 
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~Mev 

FIG. 6. Plot of the 
function ((v), calcu
lated for a level density 
as given by (38) for the 
following values of the 
parameters: 1 -a = 0 
[odd-odd nucleus, v = u, 
cf. (31)]; 2- a= 1/400 
Mev, 3- a= 0.5 Mev; 
4- a as a function of the 
energy (curve 1 of Fig. 7), 
a, = 1/400 Mev; a 2 = 0.5 
Mev, v* = 0.4 Mev, T= 0.8 
Mev. 

When compared with the odd-odd nuclei, the ex
perimental spectra of deformed even-even nuclei 
are characterized by a large number of quanta of 
relatively large energies ("" 2 - 4 Mev), while the 
spectra contained relatively fewer soft quanta ( E 
~ 1.5 Mev) and, in addition, a sharp peak exists 
with a width ~ 0.5 Mev at E"" 1 Mev.4 These 
first two distinctions suggest the choice of a rela
tively large value of a. For an exponential den
sity [Eq. (38)] the best agreement from experi
ment was obtained at Ol = 0.5 Mev and T = 0.8 
Mev, 4 i.e., for the same value of T as for the 
odd nuclei located in the same region. The afore
mentioned similarity in the density as given by 
(39) leads in the case of even-even nuclei to a con
siderable difference in the spectra calculated by 
means of (38) and (39). In the case of (39) the y 
spectrum is characterized by much greater val
ues of v (E) in the region E ~ 1 Mev, and di
minishes more rapidly with increasing E than 
the spectrum calculated for an exponential level 
density. Therefore, in order to make the theoret
ical spectrum calculated for the density given in 
(39) closer to the exp~rimental spectrum of the 
even -even deformed nucleus, it becomes neces
sary to take a = 5 Mev-1• So small a value of 
this parameter ( T0 ~ 2.3 Mev) is very unlikely, 
particularly if it is considered that the value ob
tained for a of odd m!clei is 15 Mev - 1• It is there
fore necessary to conclude that the form of the 
spectrum of the even-even nuclei is evidence of a 
weak dependence of the level density of deformed 
even -even nuclei on the energy above the gap, at 
least compared with (39). 

Let us return now to an examination of the third 
singularity of the spectra of the even-even deformed 
nuclei, namely the presence of a sharp peak at E 
"" 1 Mev. In principle, such a peak is present at a 
small value of a, on the order of 1/400 -1/1000 
(see Fig. 5); however, at such a value of a the 
theoretical spectrum does not differ in practice 

from the spectrum for a = 0 (i.e., the spectrum 
of the odd-odd nucleus) and all the remaining re
gion, with the exception of the region of the peak 
and, accordingly, in the region E < 0.5 Mev (see 
curves 1 and 3 in Fig. 5). On the other hand, at Ol 

on the order of unity, at which the general form of 
the theoretical spectrum is in good agreement with 
the experimental spectrum of deformed even -even 
nuclei, there is no sharp maximum at all at E "' ~; 
the population of the levels of the nucleus with en
ergy u ~ ~ is found to be small, owing to the com
petition of type B transitions, which in this case is 
~;. ..1bstantial even for large nuclear excitation energy. 

It is natural to attempt to resolve this contradic
tion by considering the dependence of a on the ex
citation energy of the nucleus. In fact, all three 
singularities of the spectrum of deformed even
even nuclei can be explained qualitatively by as
suming that the parameter depends on the energy 
as shown in Fig. 7 (curve 1), taking v* ~ 0.4 Mev. 

FIG. 7. Two ver
sions of the function 
a(v) for which the 
spectra were calcu
lated. 

IX(V) 

dz fr· ---,_ -2 

~o~===o~*~-----------------v~ 

At such a value of · Ol the y spectrum will coin
cide with the spectrum calculated for a = 0.5 in 
the quantum energy region v*~ E < ~ and E 
> ~ + v*, while in the region ~ < E ~ ~ + v* the 
spectrum will have a sharp maximum, as in the 
case of small a. This can be readily established 
by considering the dependence of VB ( E ) on a 
[VB ( ~) = { t (v) }v=o is independent of a]. The 
y spectrum was calculated also for variable Ol, 

in the form of a step (curve 1 of Fig. 7), and a 
ramp function (Fig. 2) for the following values of 
the parameters: a 2 = a 1 + 0.5 Mev, a 1 = 1/400 
Mev, v* = 0.4 and 0.8, and T = 0.7, 0.8, and 
0,9 Mev. The parameter ~ was taken to be 0.8 
and 1.2 Mev. The density of the levels is speci
fied in the form (38). 

For illustration, Fig. 5 shows also one of the 
spectra calculated for the function a ( v ) , taken 
in the form of a step. The discontinuities there 
are connected with the presence of a sharp jump 
in a and, naturally, will be smooth if the region 
of the sharp variation Ol (v) is somewhat smeared 
out. The spectra calculated for the ramp curve 2 
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of Fig. 7 do not differ in practice from the spectra 
at constant a = a 1. The spectrum shown in Fig. 5 
for variable a has all the features of the experi
mental spectra of even-even nuclei, on the basis 
of which one can conclude that in the region ,...., 0.5 
Mev above the gap, the value of the parameter a 
is very small compared with the entire remaining 
energy region. The specific value of the param
eter a near the gap ( a 1 ) is not important here 
for the essential singularities of the form of the 
spectrum. 

At the present time the structure of the levels 
of deformed even-even nuclei in the energy region 
above the gap has not yet been sufficiently inves
tigated, and one can only guess at the reasons for 
the forbiddenness of the transitions through the 
gap for not too high a nuclear excitation. Such a 
forbiddenness could occur were the emission of 
the y quanta to result in production of nuclei 
with large spins. This, however, can hardly be 
the cause of the forbiddenness, since near the 
ground state of even-even deformed nuclei there 
are always closely-located rotational levels, with 
sufficiently large spins, to which a radiative tran
sition would be possible. A selection of transitions 
based on parity can also not lead to a sharp change 
in a, for the selection of transitions to the ground 
state by parity takes place also for transitions 
from strongly excited states. 

A possible explanation of an energy dependence 
of a similar to that shown in Fig. 7 may be the 
presence of an additional forbiddenness based on 
the projection of the momentum on the nuclear axis 
in deformed nuclei (the quantum number K ) . The 
ground state is characterized by K = 0. A selection 
rule based on K, .6a.K = 0, and 1, would pick out 
in the case of dipole transitions only those excited 
states for which K = 0 or 1. If it is assumed that 
states with such K are missing in the vicinity of 
the gap, with the exception possibly of the lowest 
state, the dipole transitions would be impossible, 
and the radiat:lve transitions through the gap would 
be less probable. Such a picture is confirmed by 
the well-studied decay schemes of w182 (reference 
6 ) and many other deformed even -even nuclei .7 On 
the other hand, the quantum number K is only an 
approximate adiabatic integral of the motion, and 
one might think that the forbiddenness connected 
with K does not play a substantial role, if one 
speaks of a transition into the ground state from 
strongly excited states of the nucleus: the wave 
function of such states is apparently a superposi
tion of states with different values of K, including 
also such for which the transition to K = 0 is 
allowed. 

This allows us to assume that the ratio of the 

matrix elements M~. /M~ is close to unity. The 

factor Po in front of the exponent in formula (38) 
then coincides with a -1, whence, using the values 
of the parameters a and T, determined from y 
spectra of even nuclei, we can estimate the average 
distance between the nuclear levels at the binding 
energy. This value should coincide in order of 
magnitude with the average distance between the 
neutron resonances (change in the nuclear spin 
upon emission of quanta is small and can be neg
lected ) . One can verify that this actually takes 
place. Reversing this argument, we could conclude, 
on the basis of the resultant value of a (,...., 0.5 
Mev ) , that the matrix elements are approximately 
equal. We emphasize, however, that we can speak 
only of a rough estimate. 

For certain values of the parameters we also 
calculated the spectrum, for constant a, under 
the assumption that the radiative transitions through 
the gap (type B) are quadrupole transitions. In all 
cases the form of the computed spectrum differs 
greatly from the experimental one. 

It is of interest to compare the data on the den
sity distribution of the nuclear levels with results 
of other methods of determining this quantity. The 
most direct method is a direct calculation of the 
number of levels below a given energy. This method 
was recently used by Erikson8 to determine the en
ergy dependence of the level density below the neu
tron binding energy for certain nuclei with A < 60. 
The level distribution agrees with (38), and the pa
rameter T is found to be 1.0-1.2 Mev. This re
sult agrees with the determination of the level den
sity from the spectrum of secondary particles in 
the ( a, a' ) reaction in the same region of nuclei. 9 

For the (p, p') reaction, a somewhat better agree
ment with formula (39) is indicated. 10 All these re
sults pertain, unfortunately, to light nuclei, which 
perhaps explains the discrepancy between the value 
of the parameter T, determined from the y spec
tra ( 0. 8 Mev ) , and that determined directly from 
the level density ( 1.0 -1.2 Mev). We note inci
dentally that the results of the analysis of the y 
spectra indicate the absence of a strong variation 
on the parameters that characterize the energy 
dependence of the level density as A varies from 
100 to 200.4 The absence of a noticeable depend
ence of the temperature on the atomic weight has 
been also noted in reference 10. On the other 
hand, the spectra of nuclei close to magic are 
characterized by relatively large values of T ( or, 
respectively, by small values of a). Thus, for 
gold the best agreement with the experimental 
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spectrum is obtained when a = 3- 5 Mev-1• We 
note also that the average distribution of the in
tensity in the spectra of light odd-odd nuclei5 is 
in qualitative agreement with the theoretical val
ues, calculated under the assumption p =canst 
(Fig. 3), which does not contradict other data on 
the level densities of these nuclei. 

The temperature of the nucleus at an energy 
equal to the binding energy of a neutron can be 
determined also from the density of the neutron 
resonances. The value of the initial temperature 
of nuclei in the rare-earth region is found to be 
0. 6 - 0. 7 Mev, corresponding to a value of the 
parameter a = 40 - 60 Mev - 1• This value differs 
substantially from the value indicated above, a 
= 15 Mev-1, obtained from the y spectra. The 
discrepancy is considerably reduced it it is taken 
into account that the expression for the density of 
levels in the given momentum for a Fermi gas con
tains a facto:r in front of the exponent, which di
minishes as u - 2 with energy. If we attempt, how
ever, to approximate the function u-2 exp.fiill by 
expressions of the form exp [ (a*u)112 + c ], choos
ing the constants a* and c in such a way as to 
make these expressions coincide at the points, say, 
u = 2 and 6.5 Mev, we obtain for the constant a* 
a somewhat smaller value. Thus, at a= 30 or 60 
Mev-1 the constant a* becomes respectively 20 
and 35 Mev-1• It is precisely these values of the 
"effective" constant a* that should be compared 
with the value obtained from the y spectra or in 
other similar cases, if the level density is given 
by an expression of form (39). 

If analogously we approximate the function 
u - 2 exp /au by the function exp ( u/ T + c ) , we 
obtain for the constant T a value "" 0. 7 Mev at 
T0 = 0.65 Mev, determined from the neutron reso
nances, i.e., a value which does not greatly differ 
from the 0.8 Mev obtained from the y spectra.* 

As regards the choice between the distributions 
(38) and (39), as already noted, both laws lead to 
quite similar results. The singularities in the 
form of spectra of odd -odd deformed nuclei, and 
a comparison of the theoretical spectra with those 
of even-even deformed nuclei, nevertheless make 
it preferable to use for these nuclei the exponential 
law (38), or at least to conclude that the level den
sity depends less on energy near the gap than 
called for by Eqs. (26) and (39). 

This result is in agreement with what is ob
tained when nucleon pairing is considered. For 
deformed nuclei the presence of pairing between 

*These results were obtained jointly with Yu. V. Adam
chuk. 

particles leads to a difference in the law of disper
sion of the elementary excitations from the disper
sion of free particles. The excitation energy is 
given by the following expression11 

(41) 

where Ev is. the Fermi energy of the free particle, 
measured from the boundary. The level density of 
the elementary excitation dv/dEv diminishes with 
energy. If we speak of an odd -odd nucleus or an 
even -even nucleus with one broken pair, i.e., at 
~ < u .!S 2~. where there are two free quasipar
ticles, the level density remains almost constant. 
As the excitation energy is increased, the number 
of broken pairs of particles increases and the level 
density begins to increase rapidly, and on the aver
age this increase is closer to exponential.12 In 
other words, in the presence of the finite energy 
to be spent on "liberating" the particle, the tem
perature of the system depends less on the energy 
than for free particles. Finally, at a certain suffi
ciently large energy the effect of pairing vanishes, 
and the level density is given by an expression of 
the type (39). 

The results of the analysis of y spectra of de
formed nuclei are in full agreement with the pic
ture drawn. Unfortunately, in spherical nuclei the 
grouping of levels in shells and subshells makes 
it very difficult to describe even qualitatively the 
dependence of the level density on the energy. The 
fact that the level density of odd-odd spherical nu
clei in the energy region .!S 1 Mev increases more 
rapidly than exp ( u/ T) can be attributed either to 
the smallness of the pairing energy, or in general 
to a particle-dispersion law differing from (41). 
For two free odd particles the level density in
creases as u2• 

The authors express their gratitude to Profes
sor A. N. Tikhonov and A. V. Luk'yanov for par
ticipating in the calculations on the Moscow State 
University electronic computer. 
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