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The formalism of the S -matrix for interacting electromagnetic field and half-spin particle 
field is considered. Particle field quantization is carried out according to a scheme sug­
gested in the works of Green1 and the author. 2 It is shown that the basic concepts of the con­
ventional theory of S -matrices (N -product, Wick's theorem, Feynman graphs) allow a 
simple generalization within the framework of the quantization scheme considered. 

l. The customary methods of quantization of wave 
fields use as commutation relations commutators 
or anticommutators based on a choice of completely 
symmetric or completely antisymmetric wave func­
tions in the configuration space of many identical 
particles. The confinement to symmetric or anti­
symmetric wave functions corresponds to the ex­
perimental data known at present as regards the 
statistics of elementary particles, but is evidently 
not rigorously established from the theoretical 
point of view. The problem as to why other possi­
bilities are not realized in nature, "equally valid 
in the sense of the correspondence principle," in 
which "lies the essence of this limited choice of 
nature" (Pauli3 ), has been discussed in lively 
fashion in the literature in the period of the devel­
opment of quantum mechanics (see, for example, 
reference 3 ) . 

With the development of methods of quantum 
theory, great progress has been achieved in the 
understanding of the connection of symmetric and 
antisymmetric wave functions with the value of the 
spin of particles4 and with the TCP invariance. 5•6 

However, consideration of the problems mentioned 
has always been carried out within the framework 
of the following alternative: either symmetric or 
antisymmetric wave functions; all other possibili­
ties have been entirely neglected. 

In this connection it is of interest to attempt to 
formulate this old problem, which arises in non­
relativistic quantum mechanics, in terms of the 
theory of wave fields. 

The generalization of the existing methods of 
quantum field theory, which takes into considera­
tion the presence not only of symmetric and anti­
symmetric wave functions, but which is also com­
patible with the fundamental premises of relativ-
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is tic quantum theory, was carried out in the work 
of Green1 and later in a research of the author.a 

In references 1 and 2, however, questions con­
nected with interaction were not considered. At 
the same time the possibility was not excluded 
that precisely the interaction between fields could 
be decisive for explanation of the separation of the 
existing methods of quantization.t 

In the present article we consider the formal­
ism of the scattering matrix (S -matrix) for in­
teracting electromagnetic field and the field of 
half-spin charged particles. Quantization of the 
field of the particles is carried out on the basis 
of transformed commutation relations [see below, 
Eq. (3)]. It is shown that, in spite of the change of 
the quantization rules, there exists a unique pro­
cedure of expansion of the S -matrix in a series 
of normal derivatives (analogous to the usual tech­
nique of Wick8 ), which makes it possible to isolate 
the vacuum effects in the S -matrix. The results 
obtained without any essential change are applicable 
also to other local variants of interacting fields. 

2. The scattering matrix for the case under 
consideration has the form 

S = T ( exp (- i \ H (x) d4x)) , (1) 

where H (x) is the Hamiltonian density in the in-· 
teraction representation 

H (x) = ie [:;; (x), ''~ (x)] A, (x), 

*The work of Green was not known to the author during 
preparation of reference 2 for publication. 

(2) 

tThe possible connection of the symmetry of a wave func­
tion with a definite type of interaction in nonrelativistic 
quantum mechanics has been investigated by Yaffe. 7 
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1/J (x) and If (x) = q;+(x)y4 are the field operators 
of particles satisfying the Dirac equation without 
interaction in the commutation representation* 
cfa. (x) cf/3 (x') cfy (x") -!- cfy (x") cfr> (x') cfa. (x) = 0 

cfo: (x) ch (x') cfy (x") + cfy (x")4/3 (x') cfo: (x) 

= - i So:/3 (x- x') cfy (x") - iSy13 (x" - x') o/o: (x), 

~"' (x) ~/3 (x') cfy (x") + cfy (x") ~/3 (x') ~a (x) 

= - iSy/3 (x"- x') o/o: (x). (3) 

AJ.l. ( x) are the operators of the electromagnetic 
field, which satisfy the usual rules of commutation. 

Thanks to the commutability of the operators 
H (x) and H (x' ), the T -product in Eq. (1) out­
side the light cone is determined in a unique, rela­
tivistically-invariant fashion. 

The operators of the electromagnetic field and 
the field of particles commute with one another; 
therefore the T -product in Eq. (1) can be repre­
sented in the form of the products of two independ­
ent T -products, one of which contains only the 
field operators of the particles, while the other 
contains only the operators of the electromagnetic 
field. The latter of these T -products will not be 
considered, since it has the same form as in or­
dinary theory. 

The absence in the quantization method under 
consideration of simple commutation rules be­
tween the two operators makes difficult the sepa­
ration of the vacuum effects in the T -product, 
which depend on the field operators of the particles, 
and requires a generalization of the concept of nor­
mal product. 

In order to make clear the idea of such a gen­
eralization, let us look first at the simplest case, 
in which there are two operators: ak is the de­
struction of a particle in the state k and at that 
of the creation of a particle in the state l [or, 
similarly the operators bk ( bk) of destruction 
(creation) of antiparticrles ] . 

The fundamental properties of these vectors are 
defined by the relations (9), (13), and (14) of I. 

Let us determine the normal product N ( atak) 
of the operators at and ak by the direct action 
of the N -product on the arbitrary basis vector:t 
N (atak) at at ... a;j-<D0 = okl at at ... a;j-<l>o 

+ ok2 atat ... a;j-<1>0 + ... +oknatat ... at<I>o 
n 

= ~ oki at ... at_1ataJ+1 ••• a;j-<1>0 , (4) 
i=l 

*We ase the notation of reference 2, which is cited below 
as l. 

tin Eq. (4) [and in the subsequent formula (6)] the opera­
tors 'b + (or a+) which can enter into the determination of the 
basis vector are omitted. Such operators, if there are any, do 
not affect the action of theN-products considered in (4) and 
(6), and without change in their position go over into the right­
hand parts of the corresponding equations. 

where <I> 0 is the vector of the vacuum state for 
noninteracting fields and the indices 1, 2, ... n 
determine the state of the particle. 

As is seen directly from the definition (4), the 
N -product in the first place preserves the sym­
metry of the wave function, which is important in 
the establishment of the connection with nonrela­
tivistic theory, and, in the second place, does not 
contain the vacuum effects, which are connected 
with the possibility of the destruction by the op­
erator ak of a particle previously created by 
the operator at. 

We note that in the quantization with anticom­
mutators, the determination just considered of the 
normal derivative coincides with the usual one. 

Making use of the commutation relations for 
the operators a and a+ (9,1), it is easy to find 
an explicit expression for the normal product 
N (atak) in terms of the operators ai and ak: 

N (atak) = atak- akat- o1k. 

The normal product of the operators 
bz is determined in similar fashion: 

n 

(5) 

N (btb/;) bibi . .. :b;l-<1>0 = - ~ o fl bi . .• bt._1bl;bf+1 ••• b;t"c1>0 , 

/=1 (6) 

where 

N (btb/;) = btbi;- bf;bt + okt. (7) 

For the case of two particle and antiparticle 
creation operators, and correspondingly for two 
destruction operators, we determine the normal 
product with the aid of the following relations: 

(8) 

N (btak) = btak- akb1• (9) 

The relations (5), (7) - (9) make it possible to 
write down the current operator in the form of a 
normal product. Actually, if the wave functions 
of the particle and antiparticle in the state k are 
connected by the relation vk = Clik., where C is 
the charge-conjugation matrix, uk and vk are 
the coefficients in the expansion (7, I), then 
UkYJ.J.Uk = VkYJ.J.Vk, as a consequence of which, 

ie [ (jl (x), tiL~ (x)] = ieN I tp (x)Tp.~ (x)]. (10) 

In the general case, the N -product depends on 
an arbitrary number of pairs of operators* and is 
determined by the following relations: 

*We limit ourselves here to a consideration of the N­
products only of an even number of field operators of the par­
ticles. Such a limitation is not essential in what follows, 
since an even number of particle field operators always enters 
into the S-matrix and into all observable physical quantities. 
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= N (atbt) ..• N (a+a2 ; ••• ) N (b1'"b+2,,; ••• ) N (b1• a2·) •.. 
1 2 1 (11) 

The order of arrangement of pairs of operators 
under the sign .of the N -product in this formula is 
arbitrary. 

The normal products N ( ai a2; ••• ) and 
N (b1b2; ... ) in Eq. (11) depend only on pairs of 
operators of the form a+a and bb+, respectively. 
The N -products of such a type are determined, 
similarly to (4) and (6), by the action of these 
products on the basis vectors: 

N (ataz; a~ar; .. . ) atat . .. a;t<Do = 
n 

= ~ Su ori ... at· .. at_1ata~H_ ... at,.1a;j;aJ+1 ••• a;t<Do, 
i, j, ... '=l n (12) 

N (bkbt; bmbf; ... ) bibt ... b;!"'<Do = (- I )P L; ok; om! 
i, , ... =1 

summation in (12) and (13) is carried out over all 
non-coinciding indices; P is the number of pairs 
of operators of the form bb + (see the last foot­
note but one) . 

Equations (8), (9), and (11) - (13) determine the 
N -product for an arbitrary even number of oper­
ators and make it possible to represent any prod­
uct of N -products ( including the T -product) in 
the form of a sum of normal products. 

As an example, let us consider the product 
N [ iJj ( 1) l/1 ( 2 )] N [ iJj ( 3 ) l/J ( 4 )] (the numbers 1, 2, 
3, 4 indicate the dependence of the operators on 
the coordinates and spinor indices ) . Making use 
of the commutation relations for the operators a, 
a+, b and b+ [Eqs. (3) and (9,I)] and the determi­
nation of the normal products, we obtain 

N (~(I) cp (2)) N (~(3} 4 (4)) = N (~(I) 4 (2); (j) (3) ·~ (4)) 

-iS+ (2, 3) N (~ (1) 4 (4)) +iS- (4, I) N (~ (3) cp (2)) 

-2S+(2, 3)S-(4, 1), (14) 

where s+ and s- are the usual ( +) - and (-) -
fold commutation functions: 

s+(X)=--i (1_!!_-m) \ o(p2+m2)tfPXd4p, 
(2ro)3 iJx j 

Po>O 

s- (x) = -~-· ( .... _!!__- m) \ o (p2 + m2) eiPxd4p. (15) 
(2ro)3 , 1 iJx .\ 

Po<O 

A similar formula holds for the T -product 
T [N ( ~ t 1) 9 ll')) N ( ~ (2) y (2'))] = N ( (j) (1) ljl (I'); (j) (2) 9 (2')) 

+ SF ( 1', 2) N ( (j) (I) cp (2')) + SF (2', I) N ( ~ ( 2)rj> (I')) 

-2SF(}', 2)SF(2', I), (16) 

where 

The prime indicates the possible difference of 
spinor indices in the corresponding operators. 

In the general case of a T -product from an 
arbitrary number of N -products, the following 
rule holds, similar to the rule of Wick in the or­
dinary quantization theory. 

In order to expand a T -product of the form 

T [N (f (I) 4 (1')) N (f (2) cp (2')) ... N (~ (n) '\1 (n')) 

ln a sum of normal products, it is necessary to 
consider all possible couplings of operators l/1 (a' ) 
and if! (b), which do not enter into the composition 
of one and the same normal product, and to substi­
tute these couplings in the functions sF (a', b). 
As a result of the superposition of the couplings, 
all the N -products located under the sign of the 
T -product are united in groups which are uncoupled 
among themselves, and which either contain no op­
erators (closed loops ) or contain two operators 
if! (a) and l/J (b') (open lines). In the latter case, 
it is necessary to join the two disconnected oper­
ators in a pair and to put under the sign N­
products oftheform N(ifj(a)l/J(b') ... ). In the 
presence of closed loops, each ofthem must be 
multiplied by an additional factor of 2.* 

We note that the rule formulated above has the 
usual graphical interpretation in terms of a Feyn­
man diagram. 

3. The relations considered in the preceding 
section make it possible to investigate in a simple 
fashion the matrix element of the scattering ma­
trix corresponding to some particular process. 
As an illustration, we consider the process of 
scattering of two particles. 

In order to determine completely the state of 
the two particles (in the given system of quantiza­
tion), it is necessary, in addition to the quantities 
that characterize the individual states (spin, mo­
mentum), also to give the symmetry of the wave 
function (in the case of pure states) or the rela-

*The fundamental difference between the ordinary technique 
of Wick" and its generalization considered here consists in the 
appearance of an additional factor of 2 in the closed loops. 
The appearance of this factor takes place not only for virtual 
processes, but also for processes which occur with the crea­
tion of pairs of real particles and antiparticles (as a conse­
quence of the normalization of the operator wave function). In 
the case of more complicated schemes of quantization,1 which 
lead in the general case to statistics of particles with maxi­
mal occupation number m for each of the individual states, 
the expansion of the T-product in a sum of N-products takes 
place in precisely the same fashion, but in this case each 
closed loop acquires an additional factor of m. 
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tive weights* of the symmetric and antisymmetric 
functions (for mixed states ) . 

The basic orthonormalized vectors of states 
for different types of symmetry have the form 

1 (-'--'- -'--'-)"'· k---'-l y2 ali at ±ai ak ""o• -, , 

k and l are indices characterizing the spin and 
angular momentum of the individual states. 

To determine the probability amplitudes of the 
scattering process under consideration, we compute 
the matrix elements of the N -product between the 
different basis vectors. 

Separating in the N -products the terms giving 
non-vanishing contributions to the matrix element 
N (~ (I) 1 ,:~ (I);~ (2) 1 fLY (2)) 

= 2N (atak;ataz) uk' (1) lfL uk (I)ur (2) lvUz (2) 

+ 2N (atak;ataz) Ur (!) lfLUk (I) Uk' (2) lvUt (2), (18) 

where the primed indices characterize the state of 
the particles in the final states, while Uk ( 1) etc 
are wave functions of single particle states, and 
noting that as a consequence of (12), 

N (atak; ataz) A ( a-{at ± ata-{) «Do 

- _1_ ( + + + -'-) "' - V2 ak.at. ± 0 z· 0 ii· ""o• 

N (af;ak; ataz) V 12 (a-{ at ±at a-{) «D 

1 (-'--'- -'- ')"' = V 2 az',ak. ±ak.ai' ""o• (19) 

we get the following expression for the non-vanish­
ing matrix elements: 

*A more detailed realization of the state (furnishing of 
coefficients in the expansion of the wave function over sym• 
metric and antisymmetric states) has no meaning because of 
the identity of the particles. 

1 - C. 1 
«D~ V 2 (arak' ±ak·ar)N(·~(l) l:"<f(I);·~(2)r.;-)1(2)) V 2 

x (at at ±at at) «Do = 2 (uk' ( 1) I~Luk (I) Uz· (2) 1 ,u1 (2) 

± u 1• (I)t~'-uk(I) uk'(2)tvut(2)). (20) 

Taking into account the sign (-) in Eq. (20), we 
obtain the well-known formula of M,Sller. The sign 
( +) in Eq. (20) leads to the following expression 
for the scattering cross section (in the center-of­
mass system): 

dc 1 , = r~ {(2s2 - 1)2 _ 4s 4 - 5s2 + 5f4 _ ~· _ 1)2} 
,-:-) o2 (s2 - 1)' sin4 \l sin2 \l j- 4 • 

For the case of a mixed state, the scattering cross 
sections da+ and da- are averaged with the cor­
responding weighting factors. 

In conclusion the author expresses his grati­
tude to A. I. Akhiezer, S. V. Peletminskil and 
P. I. Fomin for valuable discussions. 
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