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The hyperfine structure of localized electron centers in crystals is evaluated and their elec
tron spin resonance is considered, taking the vibrations of the ions (atoms) into account. We 
have obtained the shape of the electron paramagnetic resonance ( EPR) lines and its tempera
ture dependence. It turns out that they have the Lorentz shape. The EPR of F -centers in 
NaCl type crystals is considered as an example. The theoretical results agree with experi
ments. The determination of the EPR half width makes it possible to evaluate the spin-lattice 
relaxation time. Numerical estimates performed for F -centers lead to agreement between 
the theoretical results and experiments. 

INTRODUCTION 

IN those papers which are known up to the present 
and which are devoted to the theory of the electron 
paramagnetic resonance ( EPR) of localized elec
tron centers, it is assumed that the ions were im
movably fixed at lattice sites .1- 5 In a number of 
cases it was possible in this approximation to ex
plain the shape of the overall EPR spectrum of 
localized centers.1•2 The shapes of the separate 
lines, however, were not explained satisfactorily 
in a quantitative way. Attempts to estimate the 
line broadening taking dipole -dipole interactions 
between spatially separated localized centers into 
account led therefore to a discrepancy of one or 
two orders of magnitude between the theoretical 
results and the experiments. In this approxima
tion, of course, one cannot consider the tempera
ture dependence of either the shapes of the sepa
rate lines or the shape of the overall EPR spec
trum. 

There are, nevertheless, recent experimental 
evidences of an appreciable temperature depend
ence of the EPR spectrum shape. 6• 7 Moreover, 
direct experimental measurements performed 
with F -centers7 show that the spin-lattice inter
action is the decisive factor for the shape. 

We shall develop in the present paper a theory 
of EPR of localized centers which will include 
the hyperfine interaction of a localized electron 
with the magnetic moments of the nuclei of the 
vibrating crystal. The latter turns out to be not 
a small perturbation, in contradistinction to the 
situation in investigations in the theory of spin-

lattice relaxation, and will be taken into account 
in the zeroth approximation of the theory. The 
calculations will be performed in the approxima
tion of extremely long wavelengths of the lattice 
vibrations which turns out to be justified in the 
case under consideration. 

The theory leads to a Lorentz shape of the sep
arate lines and to its correct temperature depend
ence. The Lorentz shape agrees also with the re
sults of phenomenological investigations. Portis8 

has given a satisfactory explanation of the satura
tion effect of the EPR of F -centers assuming 
that the shape of the separate lines is close to the 
Lorentz shape. A similar assumption enabled 
Wolga and Strandberg9 to obtain the correct shape 
of the smoothed out EPR line of F -centers. 

1. THE HAMILTONIAN AND THE ENERGY 
SPECTRUM OF THE SYSTEM 

The Hamiltonian of the system (a localized 
electron interacting with the lattice vibrations, 
with the nuclear magnetic moments, and with the 
external static magnetic field) can be written in 
the form 

H=T+V(r,u)+Hvib+fls+L;Qn, (1) 
n 

where T is the electronic kinetic energy operator, 
V (r, u) the operator of the interaction energy be
tween the electron and the lattice, which does not 
take into account the hyperfine interaction (this 
term contains, in particular, also the operator of 
the energy of the electron in the periodic crystal
line field); Hvib the lattice vibration energy oper-
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ator, H3 the operator of the energy of the interac
tion between the electronic magnetic moment J.J. and 
the external static magnetic field JC, I) Qn the 

n 
operator of hyperfine interaction of the localized 
electron with the magnetic moments of the nuclei 
in the neighborhood, u the displacement vector 
of an arbitrary lattice point, and n the vector de
termining the position of a lattice site. The Hamil
tonian (1) does not contain spin-orbit interaction 
terms as we shall in the following consider sys
tems for which I. = 0. 

For small displacements u we can expand the 
operators V and Qn in a power series in u and 
restrict ourselves to the linear terms in the expan
sion. Equation (1) can then be rewritten as follows 

fl = T + l\ (r) + u (grad V)0 + Hvib 

+ Ha + 2J Q~ + 2J U (grad Qn)o (2) 
n n 

Writing u as an expansion in a complete set of 
functions 

U = 2J UxaXx (r), (3a) 
X,Ct 

Xx (r) = Y2 I L8 sin (xr + n: I 4) (3b) 

and using in (2) dimensionless normal coordinates, 
we get 

' A A ~ 1~ 2 
H = T + Vo (r) + ..::.J BXCl q"" + 2 ..::.J nW)((l (q!a - a I aq!a> 

X,Cl 
)((l 

(4) 
n n,x,ct 

where a is the number of the branch of the lattice 
vibrations and wKa the frequency of the K -th vi
bration of the a -th branch. 

The energy spectrum of the system can be ob
tained without writing down explicitly the operator 
coefficients BKO! and A~a· The energy of the 
spectrum is determined by minimizing the func
tional 

J = ~ '}1'0 H'Yd-c .. . dq,_« ... dSz . .. dinz . • • (5) 

The symbolic integration over the spin coordinates 
of the electron Sz and of all the nuclei of the sur
roundings of the defect ... , inz• ... means summa
tion over the spin variables. 

We shall choose the wave function of the system 
in the form 

'Y = ~ (r) <D ( · · · qxa · · ·)X (Sz' · · · ' inz' · · · ). (6) 

Substituting (6) into (5), restricting ourselves to the 
contact terms in the hyperfine interaction operator 
and in the approximation of strong magnetic fields, 
we get 

J = T + Vo + 2J Bxcx ~ <D•q"" <D ... dqx« 
xcx 

+ ~~ <D• ~ nw (q~ -~)<D. . dq,.« 
2 J XCX XCl X« aq! .. 

+ ([LIS) Szf?t z + 2J (811'[L[Ln I 3SI n) I ~ (r = Rn) 12 s.I nz 
n 

+~A~.,~ <D•qx«<D ... dq,.. ... , 
nxa 

(7) 

where Inz is the ·quantum number of the operator 
of the z -component of the spin of the n-th nucleus. 
The bars on top indicate averaging over 1/J ( r). 
Without loss of generality it was assumed in (7) 
that the axis of the system coincided with the di
rection of the external static field. 

Varying (7) with respect to <I>* leads to the fol
lowing equation for <I> 

{~ ~ nw,.., (q!.,- a2 ; aq! .. > + ~ (8"" + 2J A~ .. ) q,. .. } 
X« xm n 

X <D ( .. • q"" • .. ) = I..<D ( ... qxcx' .. ) (8) 

One can write Eq. (8) in the form 

{+ 2J nw"Cl !(q""- q:(l) 2 - a2 ; aq~J 
X« 

- ~ .!... nw q'2} <D = :t.<D .L.J 2 X« xa: ' 

"" q:., = q:., + q~«' 
(9) 

(10) 

(11) 

q~ll = - [~ (D~11kxll) f nzSz] I nWxa, D~al nzSz = A:a, (1.2) 

where kKa is a unit vector with components 

with eKa and C{JKa being polar angles determin
ing the direction of the vector qKO!· 

It follows from (9) that 

A= 2J nWXCl (nxa + +)- ~+ nW""'q~~. • (13) 
X« X« 

""' 
where <I>nK a are the eigenfunctions of an oscillator 
with its equilibrium position at the point q~O!· 

Using (13) and (14) we get for J 

J = T + v 0 + ~ nWxa ( nxa. + +) + ([L I S) s zfH z 
xo: 

n xa. 

(15) 

The electron-coordinate part of the wave func
tion (6) is determined by minimizing (15) with re
spect to 1/J ( r). The evaluation of the 1/J ( r) corre
sponding to the minimum of J and the substitution 
of that function into (15) determines the energy 
terms of the system. We note in passing that the 
presence in (15) of spin dependent terms can in 
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no way appreciably influence the wave function 
parameters, as these terms are several orders of 
magnitude smaller than all the others. We can 
thus to a high degree of accuracy use for our cal
culations the 1/J -function evaluated without taking 
the "magnetic" terms into account. 1/J (r) has been 
evaluated in this approximation. for a number of 
localized electron centers (see, for instance, ref
erences 10 and 11 ) . 

The frequency of the quantum transition involv
ing a change in the electron spin and the emission 
(absorption) of phonons is determined by the ex
pression 

nQ = q!' ;;e, + ~ (81t!J-!J-n I 3SI n) ~2 (r = Rn) I nz 
n 

(16) 

'"" ""' 
By comparison with the paramagnetic resonance 
frequency in a crystal with "clamped" ions, (16) 
contains a term (the third one ) corresponding to 
the emission (absorption) of phonons accompany
ing the electron-spin transition. The fourth term 
determines the constant shift of the EPR frequency 
in a vibrating lattice. This last term must lead to 
an additional change in the g -factor of an electron 
in a crystal. 

2. SHAPE AND TEMPERATURE DEPENDENCE 
OF EPR LINES 

To evaluate the absorption coefficient for lines 
corresponding to the frequencies (16) we can use 
the general expression for the intensity of the ab
sorption of electromagnetic radiation by localized 
centers given by Krivoglaz and Pekar12 

"• = K (2r:ir1 ~ dz · z-< .. ,+1> exp ~ (q""'1 - q""'2) 2 

xa 

X [+ (Ttxa + 1) z"'""' + -i-nxa z-"''""- Ttxa- -i-]. (17) 

In the case under consideration qKa1 and qKa2 
are the equilibrium positions of the normal coor
dinates in the ground state (as far as the electron 
spin is concerned ) and the excited states. The co
efficient K depends in the given case on the ampli
tude of the incident radio-frequency field and on 
the temperature determining the difference in 
population of the magnetic levels. If 2/)JC/kT « 1, 
K is inversely proportional to the temperature. 
The integration is over a closed contour encircling 
the point z = 0, 

hro, = 2J hro""' (Ttxa - n~a)' (18) 

""' 
Ttxa = [exp (hro""' / kT)- I p. (19) 

It follows from (1 0) that 

(20) 

where q~a 1; 2 and q~a _1; 2 are the values of 
0 ' 1 ' 1 qKa for Sz = Y2 and Sz = - Y2· 

It is convenient to go _over to new variables 
z = peicp in (1 7) and to put p = 1. Separating 
moreover the real and imaginary parts of T e 
one sees easily that the imaginary part of Te is 
identically equal to zero. Using also the fact that 
the integrand in the expression for the real part 
of Te is even we can rewrite (17) in the form 

" 
"• = (K / 7t) ~ d~ cos[~ +a,. .. sin~"'~- ro,~ J 

0 "" 

xexp{2J a""(n""'+ !)lcos~arp-1]}. 
xa 

(21) 

(22) 

It is appropriate to emphasize once again that 
the summation over a in (21) includes all branches 
of the dispersion. One can, however, show that in 
the case under consideration the optical frequencies 
do not play an important role in (21). To show that, 
we estimate the indices of the exponentials corre
sponding to the optical vibrations. We shall re
strict ourselves for the sake of simplicity to lat
tices containing two ions in the elementary cell. 
One can in that case determine the displacements 
of the positive and negative ions u+ and u_ in the 
lattice from the following equations 

M+u+ + M_u_ = 0, 

(e l n2Qo) (u+- u_) = P, 

(23a) 
(23b) 

where M+ and M_ are the masses of the posi
tive and negative ions, ~0 the volume of the ele
mentary cell, n the refractive index in the crys
tal, and P the vector of the specific inertial po
larization of the crystal in the case of extremely 
long wavelengths. It follows from (23) that 

An expansion of P in a series in terms of a 
complete set of functions XK ( r) and the transition 
to dimensionless coordinates using the relations 

qx = V 4:t / hro0cP x (25) 

leads to the following expression for u+ 

.Q0n2M_ " • /1tw0c ( ) 
u+ = e (M_ + M+) "-! Y ~;";"" QxXx r • 

X 

(26) 

where w0 is the frequency of the limiting optical 
vibrations, c = 1/n2 -1/E, and E is the dielec
tric constant of the crystal 
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(30) We shall assume that the radius of the state of 
the localized electron is not much larger than the 
lattice constant (this occurs in a wide range of 
crystals ) . In that case only the hyperfine interac
tion with the nearest ions in the lattice will play 
an important role. Let these be, for instance, the 
positive ions of the first coordination sphere sur
rounding the defect (the estimate is not essen
tially altered if we take several coordination 
spheres into account). For our estimate we can 
put 

(grad it)0 =(8:tr-tP.n I 3Sln) (vr?)r=R+S,lnz· 
n . 

Using (26) we get for q~ opt 

o 87tf-'f-',Qon2 M_ -. / 1twoc ..,_, 
q"· opt= - 31tw0Sl n (ilL+ M+) e V 411 LJ Xx (R~ )(vc?)r=R~ k. 

n (27) 

The summation is over the positive ions of the 
first coordination sphere. 

A direct numerical estimate of the index of the 
exponent in (21) using (22) and (27) and strongly 
overestimating shows that this index is practically 
equaltozero (10-15 -10-16 ). Asimilarestimate 
of the sum in the argument of the cosine in (21) 
leads to the result that here also the role of the 
optical vibrations is insignificant. As we shall 
show directly in the following, the index of the 
exponent in (21) is for the case of the acoustic 
vibrations, generally speaking, not small (of the 
order of unity). The interaction with the long 
wavelength acoustical vibrations turns out to be 
very substantial, which follows both from the ex-:
pression for the coupling constant for the spin
lattice interaction 

and from the general physical picture of the phe
nomenon.* 

We note that for the optical vibrations the coup
ling constant is equal to 

C _ Qon2AL -./ftw0c..,_,( dQ') 
opt- e (AL -I- ,\1+) V t;;.- LJ gra n k. 

n 
(29) 

For small K, CKa will thus be appreciably larger 
than Copt· Taking the above remarks into account 
we can with great accuracy in (21) in both sums 
over K and a retain only the three branches of 
the acoustical vibrations. 

For the actual case of the extremely long wave
lengths we can introduce the normal coordinates of 
the acoustical vibrations using the relations 

*One sees easily that for the spin resonance phenomenon 
the long wavelength phonons with frequencies w - 2p.Hfh play 
the most important part. This follows, though, directly from 
the expression given in the following for u2 , where the seCond 
integral with the limits w1 - 2p.H and w0 does not play a part. 

Taking (30) and (12) into consideration we can write 
q~a in the form 

q~~ = w~', 2; (Pk") Zx (Rn) Sin:· 
n 

We note that (32) is independent of InzSz. 
It follows from (22) and (31) that 

(31) 

(32) 

ax~= w;;} ~ (Enkx~) (En'kx~) Zx (Rn) /:.< (Rn•) lnzl n'z• (33) 
nn' 

By generously overestimating, we find from a 
numerical estimate similar to (27) but for the 
acoustical vibrations that the sums 

} .L Gxcx (COS Wxcx 9 - I), 

"" xcx 

are appreciably less than unity (of the order of 
10-6 ). Therefore 

'te ~ ~ ~cos We?. exp ( ~ Gx~nx:x [cos Wxcx cp- I)} dy. (34) 
0 )(,(l 

Replacing the summation over K by an integra
tion over K -space we are by a direct integration 
over (}a and rp a and a summation over a led 
to the following result 

-:, = (K I :t) ~dcp cos (r•J,:,:;) exp ~M ~'[C05 (•Jx y- I) nxx- 1d:J, 
0 \ ' J(35) 

(36) 

where c11 and c1 are the velocities of the longi
tudinal and transverse waves. We note that M > 0. 
To obtain (35) we took into account that in the sums 
over K in which the extremely long wavelengths 
play the dominant part, KRn « 7T I 4 and thus 
sin (KRn + 7T/4) ""=' 1/f2. 

For the integration it is convenient to write (35) 
in the form 

2:'wl '-o 

-:,=(K/::) ~ dcpcos(w,:,:;)exp{M~ [cosw,cp-l]nxx-1dxl 
0 ,, 

--l- (K I:-:) ~ d1- cos (w,:,:;) exp{M ~,[cos l·Jx 9- ! ]n-.z-1dz: , 
2,w 1 (I · 

where w1 is the frequency within the interval 
( 0, w0 ) which satisfies the condition 

(37) 

(38) 

We shall show that the first integral in (37) is 
appreciably less than the second one. To do this 
we note that 
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... 
\ COSCil<p-1 dco 
~ exp (A<o> I kT) - 1 w 
0 

cannot be positive. Its largest value is equal to 
zero. 

'}/ .. , 
u1 = ~ ~ drpcos (w.rp) 

~ 

We write the second integral in the form 

{M [ t cos <o><p - 1 dco (" cos co<p- 1 dco ]} 
X exp ~ exp (Aco 1 kT) - 1 co + .l exp (Aco I kT)- 1 w 

0 ... 

One can show that in the index of the exponent the 
first integral ( J 1) plays the dominant role. To 
show this we expand n ( w) in powers of tiw/kT. 
We can restrict ourselves by virtue of (38) in J 1 

to the first term of the expansion. The second in
tegral J 2 is only increased when we replace n ( w) 
by kT/tiw. Thus 

.. ,cp 

J _ [ 1 -cos co1<p \ sinx d ] kT 
1 - (o)l - rp .l -x X T ' (39a) 

0 

6le<P t.ltl'tl 

\ sinx d + ( sinx d ] - rp .l -x x rp l ---x x_ • (39b) 
0 0 

w1cp > 1 in the range of values of cp ( 2/ w1, 1r). 
Using the asymptotic expression for the sine in
tegral we can write (39) in the form 

J 1 = (kT In) (I I w1 - mp I 2) =- kTmp I 2n, (40a) 

J2 < (kT In) (I I COo- 1 I col)· (40b) 

It follows from (40) that J 1 is larger than the 
right hand side of (40b). Therefore 

(41) 

Integrating, we get 

K exp (-2m I w1) ( 2<o>e • 2<o>e ) 
u~ =- 2 m cos - -We sm - , 

1t m2 + "'• <o>1 <o>1 
(42) 

m = MkTrc I 21i. (43) 

Since for the range of frequencies of interest (for 
which Te is still appreciable) 2we I w1 « 1, we 
find 

(44) 

Comparing (44) and u1 s 2/ w1 it follows that 
in this interval u2 » u1. 

Therefore 
K m 

'te:::=:::::- ' 
1t m2 + "'; 

(45) 

if w1 is chosen within the range 

m<w1 <kT ;Ti. (46) 

Numerical estimates show that m r:::; 106 - 10 7 

sec-1• Therefore (46) is not a strong inequality 
restricting the range of temperatures. For w1 
r:::; 109, for instance, T ~ 0.01 o K. 

Equation (45) is a general expression for the 
absorption coefficient at frequency we. It can be 
seen from this expression that the curve has the 
Lorentz shape. The half width of the line o is 
determined by the expression 

o =2m. 

The total intensity of the absorption in the line 
turns out to be equal to 

+co 
~ -c.dwe = K. 

-co 

(47) 

(48) 

It follows from (47) and (43) that the EPR line 
half width increases linearly with temperature. 
The absorption coefficient at the maximum 

-c, max = K I rem, 

is thus 

3. THE SHAPE OF T,HE EPR LINES OF 
F-CENTERS 

(49) 

(50) 

For the sake of simplicity we restrict ourselves 
to such colored crystals for which the hyperfine in
teraction of the electron with the nuclei of the first 
coordination sphere, for instance with alkali halide 
nuclei of the NaCl type is substantial (the general
ization to the case of interactions with several 
coordination spheres does not present any difficul
ties in principle). It is well known that there are 
in that case 19 lines corresponding to the different 
values of the z -component of the total spin lz. The 
intensity of each of the 19 lines is determined by 
the interaction of the electron spin with the lattice 
vibrations without taking the statistical weight of 
the state with a well defined value of lz into ac
count. 

The consideration given above shows that the 
line corresponding to one of the possible distribu
tions of the values of Inz (for given lz ) is broad-
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ened. The intensity of each of the 19 lines Te is 
thus made up of the intensities of broadened lines 
with a well defined distribution of lnz 

K ~ m; 
"Ce =- , (51) 

, " . m2 + w~ 
where the summation e~te~ds over all states with 
different Inz but fixed Iz. 

One shows easily, using (51), that the total line 
intensity turns out to be equal to Ka, where a is 
the statistical weight of the state. One sees easily 
that (51) has also the Lorentz shape for we which 
are small or large compared to the mi. The range 
of intermediate values is small so that (51) to a 
good approximation has the Lorentz shape for the 
whole interval over which the frequency varies. 
What has been said above substantiates the assump
tion of the phenomenological theory of the satura
tion effect of the EPR of F -centers which agrees 
well with experiments, if one assumes that the 
shape of each of the 19 lines is the Lorentz shape8 

in their "tails." 
To obtain the overall shape of the EPR line of 

F -centers in accordance with experiments it was 
also just assumed9 that each of the 19 lines had a 
Lorentz shape. It was then again emphasized that 
to obtain the correct shape of the EPR band it is 
sufficient that the Lorentz shape occur in the 
"tails" of the curve. 

The frequency dependence of the absorption co
efficient of the whole EPR band can be written in 
the form 

't = .!5_ 2] mi 

7t if m~ + {Cile- ool.}.,. 
" 

(52) 

if we use (51), where Wiz is the frequency of the 
maximum of each of the 19 lines. 

Equations (51) and (52) enable us to obtain the 
temperature dependence of the band width in the 
frequency range near the maximum. If we« mi, 
it follows from (51) that 

·-c ~ {.!5_ 'V m-I_ w2 ~ m-:-s} . 
e--- 7t: .LJ i e . l 

i ' 

(53) 

We shall as an example determine the line width 
in the neighborhood of the maximum for Tea 
= ( 1 - a) Tmax where a < 1. It follows from (53) 
that the line width is equal to 

OCl = 2 [ (7; ~ mi1 If mi3 r. 
Taking (43) into account we find that 

~> .. ~r. 

(54) 

(55) 

A similar consideration enables us to obtain the 
temperature dependence of the width of the whole 
EPR band in the neighborhood of the maximum. 
The dependence turns out to be more complicated. 
The band width increases slowly with the tempera
ture in accordance with the experimental results.6•7 

One sees easily that the mi depend on the val
ues of the gradient of the wave function of the lo
calized electron at different lattice sites. A com
parison of the results of the theory developed in 
the foregoing with experiment may thus serve as 
a method to determine the gradient of the wave 
function. This can be especially simply done for 
those crystals in which the localized electron in
teracts only with one magnetic moment of the nu
clei of the surrounding atoms (such a situation 
occurs, for instance, for F -centers in MgO 
crystals). 

In conclusion we note that knowing the width of 
the absorption lines enables us to estimate the 
spin-lattice relaxation time t. In the weak coup
ling limit (which is valid in the case under con
sideration) t is inversely proportional to the 
line width. Preliminary estimates performed 
for F -centers, show that t ~ 10- 5 -10-6 sec. 
This magnitude agrees well with the correspond
ing experimental results (see, for instance, ref
erence 8 ). 
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