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The method previously developed by the authors is used to calculate the nucleon-=nucleon scat
tering amplitude in the two-meson approximation for large orbital angular momenta. Specific 
calculations are carried out for the singlet amplitude in the non-relativistic approximation for 
orbital angular momenta which are not very large, 1 « l « 4m2/l (m is the nucleon mass, 
J.1. the meson mass). The results obtained indicate that the F and G phase shifts for nucleon 
energies Elab :£:. 200 Mev are given to good accuracy by the one-meson approximation. This 
conclusion may prove important in the phase shift analysis of nucleon-nucleon scattering. 

1. CALCULATION OF THE TWO-MESON AM
PLITUDE 

IN a previous paper1* it was shown that, in order 
to calculate the nucleon-nucleon scattering ampli
tude in the two-meson approximation for large or
bital angular momenta, it is necessary to know the 
meson-nucleon scattering amplitude fa{3· The lat
ter amplitude, according to formulas (2.25, I), (3.1, I), 
(3.6, I), (3.20, I), is expressed ~s follows: 

fa~ (PI• P1 + q; k + qj2, k- qj2) = f'"'~ + f:.~ + T:w 

f 2 k 
pa~ =- g 'tct't~ (k + q/2)2 + 2pl (k + q/2) 

+ 2 k 
g 't~'ta; (k- q,'2)2- '2pl (k- qj2)' 

(1.1) 

wh·ere a= 1.2, {3 1 = 0.025, and {32 = -0.029. 
We insert (1.1) into (2.29, I). Omitting the term 

quadratic in fa{3 (it would give a contribution to 
the scattering phase shift containing an extra fac
tor 1/L, where L is defined by (2.16, I)], we 
obtain 

(1.2) 

where 

*This paper will be referred to as I. 
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B0 = + ~ t:. (k, q) d4k (up,+q up,) Cup,-q up,). 

B _ ~ 1 [ (up,+q 1 iiI up,) (iip,-q up,) 
1 - i J (k + q/2) 2 + 2pl (k + q;2) 

+ (up,-q 1 ii 1 up,l (iip,+q up,) J Ll (k ) d4k 
(k- q(L)' + 2p2 (k- qj2) 'q ' 

B __ 2m2 \ [ (up,+q I ~t k + ~zPtk!m I up,) (up,-q I k I up,) 
2 - ip.2 J (k- q/2)2 + 2p2 (k- ql2) 

+ (iip,+q 1 k 1 up,) (up,-q I ~~k + ~.p.k/m I uP,> J t:. (k ) d4k 
(k + q;2) 2 + 2pl (k + q;2) 'q ' 

m2 \ (up,+q 1 k 1 up,) (up,-q 1 'k I up,) t. (k, q) 4 
Ba = T) [(k+ q;'2)2 + 2p1 (k +q;'2Jl !(k-q;2) 2 +::p.(k-q;2)J d k, 

Introducing, as usual, the Feynman parameter 
x, we express B 0 in the form 

1 

B0 = 2~ ~dx~d4k[k2 -fL2 +q2j4-qk(I-2x)r!,(1.3) 
0 

(1.4) 

The integral over d4k in (1.3) extends to infin
ity, but the high momentum contribution appears as 
an additive constant, independent of q2, and it need 
not be taken into account. We separate the finite 
term, differentiating (1.3) with respect to JJ.2, then 
integrating over d4k and then integrating back 
again with respect to JJ. 2• Integrating, finally, over 
dx we obtain the singular part of the integral in 
the form 

s -tY1-s' B0 =-w--tan --, y 1-sz s 
(1.5) 
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(1.6) 

For the square root (1. 6) we choose the branch 
which is positive in the physical region. In this 
case, on the upper side of the cut, s = - i I s 1. 

We restrict the discussion below to the singlet 
amplitude in the nonrelativistic approximation and 
for this case only we shall calculate the matrix 
elements of the type (1.4). Expanding w in pow.ers 
of p2/m2 and setting cos e = 1 + 2~2 , we obtain, 
to an accuracy including up to second-order terms* 

w = 1 + (p2f2m2) (1- cos 8) = 1-s2 ; s = p.jm. (1. 7) 

Now expanding (1.5) in powers of s, and retain
ing the leading term, we obtain finally, 

(1.8) 

For the integration in B1, we introduce two 
Feynman parameters x1 and x2 (taking into ac
count that 2p1q = - q2, 2p2q = q2): 

1 1-Xz - "' -

Bl = 4~ \ dx2 \ dxl \ d4k { (up,+q I k I up~) (up,-q up,) + .. ·}• 
l ~ ~ ~ (k2- 2pk - A.JS 

P =- qf2 + qx1- P1X2, .:l =- q2j4- p1qx2 + p.2 (1- x2), 

(1.9) 

the dots indicating a similar term with p1 re
placed by p2. 

Integrating over d4k, we obtain 

1 l-X2 

81 = w ~ dx2 ~ dx1 ;: , b2 = x~ + s2 (1 - x2) 

0 0 

- 4s2 (1- s 2) x 1 (1- X1 -x2). (1.10) 

Making the substitution x1 = ( 1 - Ey- z )/2, x2 = Ey 
and integrating over dz, we obtain 

1/< ,r--
B = _w_ \ Ltan-1 (1- ey) r 1- s• d (1.11) 

1 Y 1 - s• ) a a y' 
0 

where 

a2 = s2 + s(1-2s2) y +[I -s2 (1 -s2)]y2• (1.12) 

For small s2, small values of y are impor
tant in (1.11), so that tan-1 [( 1- Ey) .../ 1- s2 /a ] 
can be replaced by 1r/2 [it is shown in the Appen
dix that by doing this we obtain an accurate value 
for the singular part of the integral (1.11)). After 
this is done the integral is easy to evaluate, since 
the upper limit gives a term, nonsingular in the 
neighborhood of s 2 = 0, which can be discarded. 
Consequently, expanding the result in powers of 

*We note the fact that the next correction term to the ex
presion in (1.7), in the present case p4 /m', is absent. Similar 
cancellations take place in the matrix elements (1.16) and 
(1.23). 

s 2 and E2 and substituting into (1. 7), we obtain 

1t I 1 _2) [ e , J B1 = - T \I + 2 "' s- 2 In (s -r- 2s) • (1.13) 

The integral B1 corresponds to the interference 
term already discussed in Sec. 2 of reference 1, 
and its discontinuity across the cut coincides with 
(2.28, I). 

As already mentioned, 1 in calculating the phase 
shift we are interested in those cases in which 
I 2s I » E for the effective region of integration 
in (2.15,!) (corresponding to L « 4m2/!J.2), so 
that we do not expand terms of the type ln ( E + 2s ) 
in powers of s. Since s > 0 in the physical re
gion, the argument of the logarithm in (1.13) does 
not vanish. However, on the other sheet of the Rie
mann surface, where s < 0, this argument does 
vanish, and on this sheet there occurs a singular 
point at 4s2 = !J.2/m2, or q2 = 4!J.2 -!J.4/m2. 

We express the integral B2 in the form 
1 1-Xz 

B2 =- ! \ dx2 ~ dx1F, 
0 0 

F = ~ \ d4k { (up,+q I k I up,) (up,-q_l ~I k + ~.p.k/m I up,) + ... }. 
l .) (k 2 -2pk-!1)3 

(1.14) 

where the quantities p and ~ are defined in (1.9), 
and the dots represent a similar term with p2 
replaced by p1. Differentiating F with respect 
to !J.2, and then integrating over d4k, we obtain 

dF = 1- x2 { m•xi~tWt + x. (x2 (m2 + 2p2) + q2 (1- 2x1 ) I 4 I ~2w 
dp.• 4 (p2 + !1)2 

where 

wl = [(up,-q Up,) (up,+q I P21 Up,) 

+ (up,-q 1 P1 1 up,) (up,-q up,)]f2m, 

w2 = (up,+q Ira I Up,) (up,-q II~ I Up,). 

(1.15) 

With accuracy up to terms quadratic in p2/m2 and 
E2 we have 

_ 1 + .!!___ ( 2 _ 1 - cosG ) _ 1 + .3E.:_ + 2 
wl - m• 2 - m• s ' 

(1.16) 

The subsequent calculations are not difficult. Neg
lecting terms nonsingular in the neighborhood of 
s 2 = 0, using (1. 7) and (1.16), and setting 

~ =- (~1 + ~2) (I+ 2p2 jm2 + + s2)- 2s2~h (1.17) 

we obtain 
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8 2 =-: ~[s--i-In(s+2s)]. (1.18) 

We now turn to the calculation of the integrals 
B3 and B4, which correspond to fourth order per
turbation theory. Introducing four Feynman param
eters and integrating over d4k, we obtain 

83 = ~2 ~ dx1dx2dx3dx4 o (~X;- 1) 

For p2lm2, E2 « 1 the arcsine can be expanded 
as a series (taking two terms into account), after 
which integration over dy and subsequenCdiffer
entiation with respect to E2 gives, for Is 12 « 1: 

8 3 =- ; 6 {( 1 + 4s2)s-s(1 +-} s2) ln(s + 2s) 

(1.21) 

[ (u~,-q I hI up,l (up,+q I hI up) 
X (h' + ~)• 

To calculate B4 the exact value of the numer
(1.19) ator in (1.20) is needed. 

[ (iip,-q I k I up,) (u~.+q I h-, I up.-> 
X (h'• + ~)• 

where 

h = P2X1 + P1X2·- q (xt- X2 + Xa- xJ)/2, 
h' = P2X1 - p1x2- q (x1 + X2 + Xa- x4)j2, 
!:1 = [J-2 (x3 + x4)- q2 ( 1 - 2x1 - 2x2)/4. 

(1.20) 

Taking into account the fact that, to accuracy 
p2/m2, E2, the numerator in (1.19) can be written 
in the form [ cf. (1.22)] 

(up,-q I hI up.) (up,+q Iii I up,) = m2 (xt + x2) 2 wlo 

we transform B 3 to the following form: 

8 3 = -+ [~• + w1 :1 ]y=l ~ dx1dx2dx3dx4 o (2] X;- 1) 
X IT (x1 + x2) 2 + s2 (x3 + X 4 - 4 (1- s2) x3x4) 

+ 4 (p 2jm2 + s2 (1- s2)) x1x2]-1 • 

Making the change of variables 

X 1 =(sy+ex)j2, x2 =-x1 +sy, x3 =(1-x1 -X2 -z)j2 

and integrating over dz, we obtain 
1/E Y --

8 =- 1 r~+w _LJ \ dr (dxtan-1(1-ey)Vt-s•. 
3 4 v 1 _ s• L 2 1 a£2 .) Y ~ b1 b1 

0 0 

b~ = s2 + s ( 1 - 2s2) y + £2 ,;2- [p2jm2 

+ s2 (1- s2)] x2 (£2 = 1 + p2jm2). 

Just as in the calculation of B1 and B2, we re
place the arctangent in the integrand by rrl2 and 
integrate over dx: 

8 "' (w• a ) 
a = - 8 Jf 1 --s• 2 + w1 8(£2) 

11• 

~ dy 

(up,-q I h' I upJ (up,+q I h? 1 up.) = m2 (x1- x2)2 w1 + m2x1 x 2w3 , 

(1.22) 

__ 4p4 ( 1 - 1 - cosll) = _ 4p2 (L + ,2) 
Wa - "'' 2 m• m" w • 

Making the change of variables 

X2 = (1-x3 -x4 -sz)/2. 

X3 =(1-sy-x)j2, X4 =1-sy-x3 

and integrating over dz, we obtain 

1/• 1-•Y 
1 1 \ \ 1 -1 yE 

84 = 4 £y) dy .) dx-r;;tan b;• 
0 0 

o Wz ( W,) a Wa a 
~=-z+ w1-T aE•-Ta(p2/m2 )' 

b; = s2 + s ( 1 - 2s2) y- [p2 jm2 + s2 ( 1 - s2)) y2 

+(1-s2)x2. 

(1.23) 

(1.24) 

The calculation of B4 (see Appendix) gives the 
following result in the nonrelativistic approxima
tion: 

84 =- 1~ {U + 3s2) s- s ( 1 + { s2) In (s + 2s) 

e: 2s£ + e:v . e: 1 
+ 2Ev ln~£(1+v) t1t 4vV1-s2f' (1.25) 

e =!LIP· (1.26) 

The branch of the square root is defined as in (1.6) 
with the cut from s 2 =- ~ 214 to - oo. 

Characteristic of this part of the amplitude is 
the presence of a second singular point at v = 0, 
which corresponds to q2 = 4J.L2 ( 1 + ~ 2 I 4), with a 
singularity of the form 

[4[J-2 (1 + ~2/4)- q2j-l/2. 

For ~2 I 4 « 1, the second point is found in the 
neighborhood of the first point ( s 2 = 0 ) but for 
~ 2 - oo it moves far away from the first; there
fore terms in (1.25) which are singular only' at the 
second point contribute to the phase shift only for 
~ 214 ;$ 1IL. In view of this, in calculating such 
terms an expansion is made in powers of ~ 2 which 
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ensures that the phase shift is calculated with er
ror < 1/L (see Appendix). The last term in (1.25) 
is the only term in the whole two-meson amplitude 
giving a contribution to Im I~2 >, so that it is cal
culated exactly for any s 2 :::: 0, since the effective 
region of the integration over Is I for Im If> is 
in the close neighborhood of the second point, I s I 
= ~/2. 

Substituting (1.8), (1.13), (1.18), (1.21), and (1.25) 
into (1.2), we obtain, for the singular part of the 
singlet amplitude, the following expression (I s 12 

« 1, lv 12 « 1): 

3g• { s M<2)(s2) = - sm CoS + ECl In (6 + 2s) + 6C2 e + 2s 

, 6 3- 2A.T [_!_In 2Es + av _ ____!!:-]} 
1 12 Ev ~E (1 + v) 2v V"1- s~ ' 

Co= (~-1)2 + C/2-~-~2)62 + f.T(62 + 2~)/3, 
c1 = ~-1 + (t:~../2- 2) 6 2 -lT (62 + ~);3, 
c2 = (3 + 2A.~)(I +e2 )/6, (1.27) 

where A.T is the eigenvalue of the operator T~)T~>. 
The amplitude has been calculated taking into ac
count first order corrections in powers of E2 and 
p2/m2 = E2/~. 

2. CALCULATION OF THE TWO-MESON PHASE 
SHIFT 

To calculate the two-meson singlet phase shift, 
it remains to integrate the scattering amplitude 
with respect to Is I along the cut, making use of 
the relation (2.15, I) for each of the functions oc
curring in (1.27). 

Taking into account that the discontinuity of the 
function s across the cut is .O.s = - 2i I s I, we 
obtain, for the contribution of this function to Iz, 

(s]z = -4rr-%~2Q1 (I+ 2~2) L_.''· (2.1) 

Inserting into (2.15, I) the discontinuity in the func
tion ln ( E+ 2s ), equal to - 2i tan-1 ( 21 s 1/E ), we 
obtain for the corresponding contribution to Iz : 

00 

[In (6 + 2s)]1 =- (IEFJrr) Q1 (I + 2~2) ~ e-LI s I' 

xtan-1(2JsJ/6)JsldlsJ. 0 (2.2) 

We calculate the integral (2.2), first differentiating 
it with respect to E, 

00 

~\ e-L Is l'tan-1( ~)JsJdJ sJ oe ~ \ e 
0 

« 1. At any energy, this makes it necessary to 
restrict l by the inequality 

l < 4/62 = 180. (2.4) 

Now expanding (2.3) in powers of ?;, we obtain, 
after integrating back with respect to E, 

[In (6 + 2S))t =- 4~ 2Q 1 (I + 2;2) L - 1 [l- 2:::-'lz~ + ... ] .. 
(2.5) 

Note that both terms written out in (2.5) can 
easily be obtained directly from (2.2), expanding 
the arctangent in powers of E/21 s I; however, 
it is already impossible to obtain the next term 
in the expansion in terms of t in this way, since 
the integral of each separate term diverges. 

For the term s/ ( E + 2s), expanding in powers 
of E/21 s 1. we obtain the first term in the expan
sion in ?;: 

11 s _ 2ie 1 s 1 _ . s + 
e + 2s - - e2 + 4 1 s 12 - - 1 2fSj · • · • 

[a: zsl =- i; 6L-'I•Q1 (1 + 2~2). (2.6) 

In integrating the remaining terms, we consider 
separately two regions of integration: 0 :::: Is I :::: ~/2 
(from the first singular point to the sedond) and 
Is I::::: ~/2 (beyond the second point). For the 
function 

[In (2Es + 6V) -In Ee (1 + v)]jEv 

in the first region we obtain 

11 _1_In 2Es + av = _l:!_ tan -1 2E 1 s 1 
Ev E~ (1 + v) Ev sv 

(2.7) 

The first term of the expansion in terfus of E/21 s I 
gives a contribution to Iz : 

i;/2 

_ 8~• Q ( I + 2~2) \ e-L 1 s I' I s I d I s I 
E 1 j V1-4isl21~2 

0 

~vZ12 

= - 4~3- Qz (I + 2~2) e-~'L/4 \ ez' dz. 
EVL .) 

0 

In the second region of integration 

1 2E I s I + sv 2i [ . 
11 Ev In E~ (1 + v) = £lVT In (6/ v I+ 2£ Is I) 

1 ie 
- In 2£ I s I = E" I s I + .... 

(2.8) 

(2. 9) 

Combining the contributions of the first term of the 
expansion (2.9) and of the second term in (2.7), we =-+v ~ + •; e•'L/4[1-<I>( arL)} (2.3) obtain 

where q, ( E..fL/2 ) is the probability integral. If 
we restrict the discussion to not too high orbital 
angular momenta, then the parameter t = E.fL/2 

(2.10) 

In (2.10) we set E2 = 1 +p2/m2 and include terms 
of first order in p2 /m2. 
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Ratio of two-meson to one-meson phase shifts 

Etab• Mev I 

'P 
lD 
lf 
'G 
'H 

2,5 

-0.08 
0.02 

-3-10-3 

10-3 
-10-4 

10 

-0.15 1 
0.04 

-6-1o-s I 
3-10-3 

-4-10-4 1 

The final term in the amplitude (1.27) is the 
only one contributing to Im 1~2 >. Its cut only begins 
at the second point,* so that we cannot use formula 
(2.15, I), obtained for the end-point t = 1 + 2~ 2 • For 
the end point t~ = 1 + 2~ 2 ( 1 + ~2 I 4) which corre
sponds to v = 0 [ q2 = 4J..t2 ( 1 + ~ 2/4 )] , similar con
siderations give the formula 

00 

lz = !: Qz(td~ e-L~/vl' ~M(v2)d/tlJ2, 
0 

.L~ = cz + IW!VO + E2;4> 11 + ~ 2 (1 + ~ 2/4)J. (2.11) 

Substituting i/v~ ~ i/v../ 1 + ~2/4 in (2.11) 
we obtain for the corresponding contribution to Iz : 

(2.12) 

Taking account of (2.1), (2.5), (2.6), (2.10), and 
(2.12), we obtain, for the two-meson singlet inte
gral Iz: 

/)2) = ~~ y;t~~.1, {Qz (I + 2~2) [c0 + Cd1 + C2d2J 

where 

d1 = 2V; [c1 + + (3- 2f...~) (I- P2/2m2) rp (z)], 

d2 = 2c2 - 4c1- (I - : f...~) (I- p2jm2), 

z 

rp(z) = ze-2' ~ex'dx, z2 =L~2!4 
0 

Inserting numerical values for a, {3, and E2 

= 0.0223, we obtain 

c0 = 0.06 + O.Oif...~, 
d1 = 0.6-0.03 f...~+ 0.6f...~(l- p2j2m) rp(z), 

d2 = -0.7 + p 2jm2 +f...~ (1.4- 2p2j3m2). 

(2.13) 

(2.14) 

The singlet phase shift is related to the integral 
Iz in the following way: 

p Im/1 = 2 (1-cos2o1) = 4o~. 

*It is interesting to note that this result does not depend 
on the approximation we have applied (expansion in 1/L) and 
it is valid for the exact scattering amplitude, i.e. values of 
t ~ tt give a contribution to Iml1. 

40 

-0.2 
0.1 

-0.02 
0.01 

-3-10-3 

90 

0.25 
-0.04 

0.04 
-7-10-3 

160 

-0.05 
-0.1 
-0.015 

360 1 650 

I 

=8J~51-0.08 
Hence it follows that for large orbital angular mo
menta (when l6zl « 1 ), the two-meson phase shift 
6 i2 > = ( Em/ 40 Re Ii2 >. Im Ii2 > is proportional to 
the square of the one-meson phase shift op>, since 
Im Ip> = 0, and the square of the "total" phase
shift is (6z)2 ~ [6p>12. 

The results (2.13) and (2.14), which we have 
obtained, show that there exists a strong compen
sation between the contributions from perturbation 
theory (fourth-order diagrams) and the terms ob
tained with the help of dispersion relations (con
taining a and {3). Furthermore, there is mutual 
compensation of terms containing {3 1 and {32 (the 
final result involves their linear combination {3 
« {3 1, {32 ), as a result of which the part f'&{3 of the 
meson-nucleon scattering amplitude [ cf. (1.1)] 
gives a negligible contribution to (2 .13). 

Formula (2.13) is the main part of an asym
ptotic expansion in the parameter 1/L ( cf. Sec. 2 
of reference 1 ) and therefore its accuracy should 
be, generally speaking, of order 1/L. In the re
sult given above, the cancellations in the main term 
may increase the importance of higher terms in the 
asymptotic expansion. For a rough order of magni
tude estimate we can apply the formula obtained 
also to cases when the expansion parameter is not 
extremely small, 1/L :5 1. 

The table shows values of 6 ~2 > /6 ~1> calculated 
for several l and ~. using formulas (2.13) and 
(2.9, I). We see that, to good accuracy, one can 
use the one-meson 1D phase shift for energies 
Elab :5 40 Mev, and the one-meson 1F and 1G 
phase shifts for Elab::;, 150 Mev. The estimates 
of the order of magnitude should also be valid for 
the triplet phase shifts. Hence it follows, that for 
the phase shift analysis of nucleon-nucleon scatter
ing for Elab :5 150 Mev, all phase shifts corre
sponding to l =::: 3 can be taken to be the one-meson 
ones, and only the S, P, and D phase shifts deter
mined from experiment. 

3. CONCLUSIONS 

The results we have obtained indicate that al
ready for moderate orbital angular momenta the 
nucleon -nucleon elastic scattering phase shifts 
are determined by the one-meson interaction. This 
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circumstance may be of importance in carrying out 
phase shift analyses of nucleon scatterings since 
(as has already been noted2•3 ) this makes it un
necessary to treat every significant phase shift as 
an arbitrary variable parameter. If for given l 
and E the two-meson amplitude (2.13) appears 
appreciably smaller than the one-meson one (2.9, I), 
then with good justification one can take account of 
the corresponding phase shift with the one-meson 
approximation. The absence of a given angular 
momentum state from the whole analysis of nu
cleon-nucleon scattering apparently makes impos
sible a unique shift analysis of the experimental 
data. The best available data on p-p scattering 
at an energy of 310 Mev give eight sets of phase 
shifts4 of which only two have phase shifts for 
large l agreeing with the one-meson ones. Un
doubtedly the use of the one-meson "tail," within 
the limits indicated in the present paper, should 
facilitate phase shift analyses. 

The results of this paper depend strongly on 
the dispersion relations for momentum transfer 
near 4!}. Although there is no reason to doubt 
the applicability of the dispersion relations under 
these conditions, nevertheless experimental veri
fication of the results obtained might shed light 
on the region of applicability of the dispersion 
relations. Since we have considered only the 
singlet scattering, naturally we have not obtained 
the complete matrix (in spin space) of the scat
tering operator responsible for the two-meson 
exchange. However, the calculations for the triplet 
state do not introduce any difficulties of principle 
and have been carried out by Grashin and Kob
zarev.6 

In all the above discussion, we have been mak
ing an expansion in powers of 1/L, retaining only 
the first nonvanishing term, so that the accuracy 
of our results should be of order 1/L. It is not 
difficult to see, however, that the basic formulas 
(2.12, I) and (2.20, I) must hold for appreciably 
weaker restrictions on the value of the orbital 
angular momentum. For these to be applicable 
the inequality 

Ql ( 1 + ~ ;2
) { exp{- (l + 1,'2) ;} for ~2 <S 1 

1 > Q1 (1 + 2!;2 ) = (4,9)1+1 for ;2 ~ 1 ' 

must hold, in order to make it possible to neglect 
three-meson states in the sum over intermediate 
states in A1 ( E, q2 ). Under these conditions for
mula (2.21, I) remains. In this case, of course, 
one cannot restrict the calculation of fa(3 to the 
point w = 0 and q2 = 4J.t2, but it is necessary to 
know the meson-nucleon scattering amplitude in 
some limiting region round the point w = 0, q2 

= 4J.t2• Therefore the problem of analytic continu
ation of the meson -nucleon scattering amplitude 
becomes much more complicated. If, however, 
such an analytic continuation is feasible, then it 
may be possible to obtain with sufficient accuracy 
an expression for the two-meson nucleon-nucleon 
scattering phase shift for quite small l. It should 
be emphasized that such an extension to small l 
depends fundamentally on Mandelstam's results,5 

while the results obtained in this paper depend 
essentially only on the following: (1) the nearest 
singular point (apart from the one-meson pole) 
lies at q2 = 4J.t2; (2) near q2 = 4J.t2 there are no 
other singular points [except for q2 = 4J.t2 ( 1 + ~ 2/ 4 )J . 

As a result of the strong compensation of the 
leading terms, which we discussed above, errors 
in the determination of L<1> ( 0, 4J.t2 ) = a (Sec. 3 
of reference 1) may appreciably change (for 
example by two degrees) the final two-meson 
phase shifts given in the table. However, if the 
ratio o12>/o11) is, for example, less than 10%, 
these errors do not alter the conclusion that in 
the given case the scattering phase shift is basic
ally determined by the one-meson interaction. 

It has proved possible to express the nucleon
nucleon scattering, caused by two-meson exchange, 
in terms of the pion-nucleon scattering and, in this 
way, a connection has been established between 
these two distinct processes. This is not acci
dental. If it were possible to do the calculation 
for small l, then the nucleon-nucleon scattering 
would be expressed in terms of the meson-nucleon 
scattering amplitude, the amplitude for the proc
ess 7f' + n - 27f' + n, etc. 

The authors express their gratitude to L. D. 
Landau for numerous discussions, and also to V. B. 
Berestetski'l, L. B. Okun', A. P. Rudik, Ya. A. Smor
odinski'l, K. A. Ter-Martirosyan, and I. M. Shmush
kevitch for a number of useful remarks. 

APPENDIX 

1. Calculation of B1. For calculating the in
tegral B1, we introduce the auxiliary function 

1/• --
B (u)= 1 \ Ltan_t(1-ey)V1-s2+ud 

1 V 1 - s2 ) a a y' 
0 

The desired integral is equal to the value of this 
function for u = 0, which can b~ written in the 
form 

00 

BI(O) = BI( oo)- ~ aB~~u) du, (A.2) 
0 
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1/E 

B oo = __ 1t_ \' ydy 
1 ( ) 2 V 1-~• ) a ' 

0 

To calculate the remaining integral over two 
(A.3) parameters in (1.24), we introduce the function 

aB1!u) 
ou 

1/E 

X \ -------'y"--d-"-y------;::==; u > 0. 
j 1- sy + y2+ u2+ 2 (1- ey) V 1- s2 
0 

(A.4) 

We consider the analytic properties of the func
tions (A.2), (A.3), (A.4) of the variable s 2• The orig
inal integral was analytic in the whole plane with a 
cut from s2 = 0 to - co ( corresponding to q2 ~ 4JJ.2, 

t ~ 1 + 2~ 2 ). In the integral (A.3) there appears an 
additional singularity at the point s 2 = 1 ( q2 = 0 ) , 
so that for (A.3) it is necessary to make a second 
cut from s 2 = 1 to +co (q2 :50, t :51). The in
tegral (A.4) is analytic as a function of the vari-
able ../ 1 - s2 in the right half-plane, and as a 
function of s 2 in the whole plane with a cut from 
s 2 = 1 to + co, since we took ~ > 0 for 
s 2 < 1. Since for the calculation of the phase shift 
we need to integrate along the cut s 2 :5 0 ( q2 ~ 4JJ.2), 
the contribution of the second term in (A.2) van
ishes identically and it need not be taken into ac
count. The calculation of the remaining integral 
is elementary. Thus the method we have indicated 
has enabled us to calculate exactly the singular 
part of the original integral (1.11), giving a con
tribution to {2.15, I), while "spoiling" the behavior 
of the function in other regions which do not con
tribute to the subsequent integration (2.15, I). 

2. Calculation of B 4• In contrast to the previous 
integral, the integral B 4, which corresponds to the 
fourth-order Feynman diagram shown in the figure, 

Diagram 
for the 
integral 

a. 

possesses singularities such that the integrand in 
(1.20) as a function of its parameters is singular 
for any real q2• It follows from this that the real 
axis for the integral B4 ( q2 ), considered formally 
for any complex values of q2, is a singular line. 
However, direct calculation shows that the func
tion B4 may be analytically continued from the 
physical region to all densities with a cut from 
q2 = 4JJ.2 to +co, which corresponds to the ana
lytic continuation used in Sec. 2 of reference (1). 
This will agree with the original Feynman inte
gral only in the upper half-plane. To calculate the 
phase shift we need just this function and we will 
not discuss its singularities. 

1/< 1-•v 

f(u)=~dy ~ dx~tan-1YEb~u, 
0 0 

b~= s2+ E(1-2s2) y-[p2jm2+ E2 (1-s2)] y 2 

+ (1- s2) xz_ iO. (A.5) 

The desired integral is equal to the value of f ( u) 
for u = 0: 

co 

f (0) = f (oo)- ~ ara~u) du, 
0 

1/E l-Oy 

00 _.::._\'d \' ~- 1t 
j ( ) - 2 ) Y ) b, - 2 Y1- s2 

0 0 
1/E 

X ~ [In (.R1+ Vl- s2(l-EY))- In .RJ dy, 
0 

.R2= s2+ E {1- 2s2) y- [p 2jm2+ E2 {1- s2)] y2- iO, 

Ri= 1-EY- p2y2jm2- iO, 

1/E l-Eg 

ofa~) = ~ dy ~ dx [s2+ E (1- 2s2)y 
0 0 

+(£2 -~. - E2 {1- s2))yz 

+ {1- s2) x2+ 2Eyu + u2J-1 • 

(A.6) 

(A.7) 

(A.8) 

The integrand in (A. 7) is singular, as before, on 
the whole real axis, so that for the following inte
gration over dy it is necessary to take s 2 real 
and analytically continue the integrated result to 
the unphysical region. The integrand in {A.8) is 
already singular only for s 2 :5 0 ( q2 ~ 4JJ.2 ), i.e., 
the second term in (A.6) is an analytic function in 
the whole plane with a cut from s2 = 0 to -co. 
After integrating with respect to x (A.8) takes 
the form 

11• ,r--at (u) (' dy t -1 r 1- s2 (1 -ey) au --v-.,.,1=-=s.=- ) a; an a, ' 
0 

ai = s2+ EY (1- 2s2) 

+ [£2- p2jm2- E2 {1- s2)] y2+ 2Eyu + u2. (A.9) 

From this integral we select the part which is 
singular on the cut, introducing another auxiliary 
parameter in the same way as in (A.1), {A.2): 

"" at (u) at (u, oo) 
-a.;-= au 

-\ a•t (u,v) 
) auav dv, (A.10) 

1/< 
at(u,oo) = 1t \ t!!!. 

au 2 -v 1 - s2 j aa ' 
0 

(A.ll) 
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1/• 

a~}~~v) = ~ [ 1- sy + ( £2-. ~.) y 2 · t- 2Eyu + u2+ v1 

0 

+ 2 (I- sy) t1 VI- s•J-1 dy, (A.12) 

The second term in (A.10) need not be taken into 
account since it is an analytic function for Re s2 < 1 
(Re q2 > 0 ). In the remaining singular part (A.ll) 
there appears an additional singularity at s 2 = 1 
and a second cut from s~ = 1 to + oo ( q2 ::::; 0 ). 
We now insert (A.10) and (A.ll) into (A.6) and in
tegrate over du. At the upper limit the integral 
diverges, but the dependence on s 2 disappears, 
so that we need only take account of the lower 
limit. Thus the singular part, contributing to 
(2.15, I), takes the form 

1/E 

f=f(oo)+ -v"' \ln[R.+Ey]dy, 
2 1- s2 ~ 

0 

The integral over dy remaining in (A.13) is 
calculated exactly, since integrating by parts and 
removing the irrationality in the denominator of 
the integral leads to the elementary result: 

f(oo)=irr:2p2 /m2+e2 lne-2ip/m _ "'Kt ln(-K) 
4pP2jm e 4 f1- 52 1 

+ "'K• InK + irr:• e (1- 2s2 ) _ rr: e: (1 -2s•) 
· 4f1-s2 2 8P2 V1-s2 8P2V1-s2 

XI (4p2 , •) "'K I 2V1-s2 pjm-iK n - ~ s - n ---'--,=='-'--.:..:...:... 
m• ' 8?2V1-s2 2 V1-s2 p;m +iK 

+ "'• (1V- 2s•) In [ 4P\ (F1-KF.)(F1+ KF2)] 
8P2 1- sz 

Here we introduce 

F1 = 2 (2p 2jm 2+ s2)(V1-s2+ l-s2) + K'. 

f 2 = s(l + 2Y-1-s2), 

p2= p•jm2+ s2 (1- 2s2), K = V 4s2p2;m2+ s2, 

(A.14) 

K1 = [K + s (1- 2s2)];2F2, K2 = [K- s (I- 2s2)];2P2 • 

The root K is defined so that it is positive in the 
physical region with a cut running from s 2 =- ~ 2 14 
to - oo [ q2 ::::: 4J.L2 ( 1 + ~ 2 I 4)] . The function (A.14) is 
analytic in the whole plane with the indicated cut. 
Leaving only terms singular for s 2 < 1 ( q2 > 0 ), 
we obtain 

f (oc) = 4 v: _ s• [- K1 1n (-K1) + K2 1n K2]. (A.15) 

The other term in (A.13) is calculated similarly: 

-I]+~ ln(-K1 ) 

-~·In K2+ K2 1n (1/s + K2)- i7r~1 + 2:. In (2Es + K) 

- Ee ~~;s•) In [2Ws + s (I- 2s2)] +~In (2P2s) 

-~ ln{2(£+ VE2-p"1 m~)[KV£2-p2;m2 

+ s£ (I- 2s2)] + sK (K -s)} 

-~In { 2 (E- V £2- p 2;m2 )lKV £2-p2;m2 

+ s£ (I- 2s2)] + sK (K + s)} 

+ a£ (1 - 2s2) I i2W V£2-'- 2 2 + 2 P·-p2/m2 _ ) 
;,IV pz n \ a p ;m • E ' 

where we have introduced W2 = E2 - P 2• Leaving 
out terms nonsingular for s2 < 1, and also the 
last term, singular for W = 0 (which corresponds 
to q2 =4m2 ), and combining with (A.15), we obtain 
finally the singular part of the original integral 
(for 4J,t2 ::::; q2 <4m-2): 

f = :: -v1'"_ 52 { Eei~-;;s•)ln [2Ws + s (I- 2s2)] 

K iTCK ( p2 2 ') + zp• In (2£s + K) - 4Ji2 + K.In 2 mz + s + €K 

- ~ In {2 (£ + V £2-p";m2 )[K V £2- p2Jm 2 

+ sE (I - 2s2) J + sK (K - s)} 

-~In {2 (E- V £2- p 2jm2)[K V £2- p2;m2 

+ s£ (1- 2s2)J:+ sK (K + s)}. (A.16) 

The singularities of the functions f ( s 2 ) and B4 ( s 2 ), 

obtained from f ( s 2 ) by the application of some 
differential operator [ cf. (1.24)], consist of two 
singular points: the point s2 =- ~ 214, which cor
responds to the value K = 0 [q2 = 4J,t2 ( 1 + ~ 214 )] . 
For · ~ 2 I 4 « 1 the second point is found in the 
neighborhood of the first, but for ~2 -- oo it moves 
away to an extremeh· large distance from the first. 
It is evident that terms singular only at the second 
point contribute to the integration (2.15, I) only for 
~214 .$ 1IL since for them the cut begins for Is 12 

= ~2 I 4 and compared with terms singular at the 
first point they will have, after integration, an ad
ditional factor exp ( - ~ 2 Ll 4). In view of this, such 
terms in (A.16) can be expanded in powers of ~ 2 

and the leading term in the expansion retained. To 
this accuracy the phase shift will depend on the 
parameter ~ 2 exp (- ~ 2 LI4 ), vanishing as ~ 2 - 0 
(high energy) and as ~ 2 - oo (low energy). The 
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largest error will be in the intermediate region 
~ 2/4 ~ 1/L, where this parameter takes its maxi
mum value 4/2.7 L ~ 1/L. But even in this region 
the expansion in ~ 2 provides just the same accu
racy as comes from our asymptotic expansion in 
1/L. Besides this, it is necessary to consider 
only the first term of the expansion in powers of 
K2, just as we considered only the first term in 
the expansion in powers of s 2• Taking this into 
account we simplify the last three terms in (A.16), 
after which we obtain, in the nonrelativistic approx
imation, for I s 2 1 « 1, I K 12 « E2: 

f " r £! · 2 
= 4p•1-w-ln[2Ws+s(l-2s)] 

_j_K In[.!!_ 2Es + K l_ iTCK } 
' m E (e -rK)J 2 Yi- s2 • 

(A.17) 

The next correction terms in (A.17) vanish in this 
case, and tl}e largest of the discarded terms takes 

theform K~4/P2 , K(p/m)4/P2• Operatingon 
(A.17) with the differential operator E ( 1/4E) 
[ cf. (1.24)], we obtain formula (1.26). 
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