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The energies and momenta of spinor fields in theories with pseudovector and scalar nonlinear 
terms are calculated on the basis of a number of new exact solutions of the wave type. By a 
semiclassical quantization the mass of the nucleon is determined as kol = 21/ 2 1r3/ 2 ~ 7 .84. 
The dependence of the energy of the field on the degree of nonlinearity is established. The 
method of fusion is used to derive from the nonlinear spinor equation a nonlinear undor equa­
tion, which on certain assumptions reduces to a nonlinear meson equation of the Klein-Gordon 
type. The conformal invariance of the nonlinear equations of the meson and spinor fields is 
discussed. 

AccORDING to the unified nonlinear field theory 
the theory of the elementary particles is based on 
the spinor equation 

(1) 

where xJ.L = (xu, it), 1i = c = 1, and A is an arbi­
trary function of lji and 1/J. Equations of this type 
that have been discussed1- 5 are 

D~ = r" (a;ax" + £2rs(fr"rs~)) ~ = o, (2) 

D~ = (1/).a;ax" + l 2 <4~)) ~ = o. (2a) 

We shall call the nonlinear equation with the scalar 
(pseudovector) nonlinear term simply the "scalar" 
( "pseudovector") nonlinear equation. 

Starting from Eqs. (2) and (2a), Heisenberg1 de­
termines the spectrum of masses and charges of 
the elementary particles, using for this purpose 
the complicated apparatus of quantum field theory 
and the Tamm-Dancoff approximate method. One 
can, however, also get close approximations to the 
masses of the elementary particles from Eqs. (2) 
and (2a) by a simpler semiclassical method, if one 
uses a certain approximate condition that is equiv­
alent to quantization. 

1. THE ENERGY, MASS, AND CHARGE OF THE 
NONLINEAR FIELDS 

The Nonlinear Pseudovector Equation 

1. Let us consider Eq. (2), in which the nonlinear 
pseudovector term has been chosen by Heisenberg 
and Pauli2 from among the possible nonlinear terms 
suggested by Ivanenko and Brodski13 by the use of 
all the known conservation laws both in ordinary 
space and in isotopic space. The equation adjoint 
to Eq. (2) is 

From Eqs. (2) and (2') we find 

a (fr/J.~) I ox/).= o, 
a (qir/J.rs~) 1 ox/).= o. 

(2') 

(1.1) 

(1.2) 

Solutions of Eqs. (2), (2') and (1.1), (1.2) in the form 
~=a(s)rp(o), 

4i =a (s) ql" (o), "= kiJ.xiL, kiL ~ (kn, iw), (1.3) 

where s is the spin coordinate and cp (a) does 
not depend on the matrices YJ.L• are found by the 
method used earlier. 4 As the result we get a com­
plex solution unique for the given type of equation: 

rp=rp0 exp{ik~<x~<}, rp•=rp~exp{-ik~<x~<}. (1.4) 

The length of the four-vector kJ.L and the eigen­
functions a ( s ) ' a ( s ) are determined from the 
equations 

where 

'I~< (k~< + "(sa~<s) a= 0, 

a (kiL- "(sal'S) "(IJ. = 0, 

all-5 =- il2 (ar~<·'isa), a= a·r4· 

Since the energy operator 

(1.5) 

(1.6) 

(1. 7) 

H =a I ox4 =- "(4"(n (iJ I OXn + l 2rsans)- "(sau (1.8) 

commutes with the spin operator 

( o a') 
a= a' 0 ' (1.9) 

(a' stands for the Pauli matrices ) , we can add to 
the list (1.3) the equation for the spin 

(ks-ok)a=O, a(s)(ks-ok)=O. (1.10) 

To calculate aJ.L5 we take the matrices in the 
form 
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' (0 1) 
al = 1 0 ' 

' (0 -i) 
oz = i 0 ' 

( ) _ (at (s)) 
r:x s - a2 (s) ' ('bt (s)) 

al (s) = b2 (s) ' 

Then we find 

( 0 ia~) 
'In= - ia' 0 1 

n 

' (1 0) 
cra = 0 -1 ' 

( ba (s)) 
a2(s) = b• (s) • 

l • • 
aas =- s 2 (a1a1 + a2a 2) = - sl2 (a14a), 

a25=il2 (b~b2 + b;b4 - b;b1 - b:b3), 

a1s = -f2 (b~b2 -';-b;b4 + b;b1 + b:b3). 

(1.11) 

(1.12) 

Let us impose on the amplitude constants the 
conditions 

(1.13) 

If now in Eqs. (1.5), (1.6), (1.10) we go over to a 
primed coordinate system6 in which k3 is directed 
along u, then on using also the conditions (1.13), 
we get (dropping the primes ) 

(w- ssk- isa4r,- sa35) a= 0, 

S=+l, E=+l. (1.14) 

From this we get for the eigenvalue of w 

(1.15) 

The function a ( s ) has been subjected only to 
the requirement (1.13) and the conditions (1.14). 
We can satisfy them if we prescribe a (s) in the 
form 

Then we get 

(
Ct Yi+S) 

al (s) = a •. l .r-- ' c. r 1- s 

(
Ct Yf+s) 

a2 (s) = a •. -1 .r-- . 
c2 r 1- s 

(1.16) 

a35 = - sl2 (o,,1 + a •. - 1) [( 1 + s) c1c~ + (1 - s)c;c2 ] (1.17) 

and for w we find w = sEk + sa35 • 

2. Let us now determine the momentum, charge, 
and energy of the field of Eq. (2) that correspond to 
this solution. The Lagrangian density function of 
Eq. (2) is 

.2 = i-.{~ (D<jl)- (~D) <ji -1 2 (~'l~lsW}. (1.18) 

From this we get for the momentum, charge, and 
energy of the field 

Gn = i~ Tn~d3x = -kn (ii14a) P, 

Q = ~ ped3x = -e (a'f.P) V, 

E = ~ T 44d3x = - w(a14a) V + + z- 2a~;V. (1.19) 

If we consider the solution (1.16), we get 

G=Nk, -Q=Ne, E=-(w+-fNl2L-3)N. 

w = ssk - l2 (a14a) = ssk -12 N L -s, 

N = (a14a) ra. (1.20) 

From these formulas we have for k = 0* 
0=0, -Q=Ne, 

(1.21) 

Let us now calculate the energy contained in the 
basic periodicity volume given by 

[3 = (27t f w)3 • (1.22) 

For k = 0 we get L = (27r/w0 ) = l (27r/N)-112, and 
we further find 

l£0 = +- N (lw0). 

In the case N = 1 we arrive by this normalization, 
which is essentially equivalent to a sort of primi­
tive quantization, at the rest mass of an elementary 
particlet 

Q=-e (1.23) 

( E0 ( N = 1) = ko. w0 ( N = 1) = kO = 2k0 ); this is 
close to the result of Heisenberg (kol ~ 6.5 for 
the pseudoscalar nonlinear field and kol ~ 7 .4 for 
the scalar field1 ). 

3. Equation (2) also has a solution of a different 
fo:rm. These solutions can be found by the method 
of integration of nonlinear equations proposed in 
reference 4. Equation (2) can be integrated if we 
introduce new functions cp and (p by the formulas 

<ji=-Dp, (1.24) 

which can be rewritten in the form 

~ = -~~ (x~ + 'YJ!-<;1;) a, q; =a <x:- "1]~515) '~~-<' (1.25) 

where a is a constant spinor. The functions X!J. 
and TJJJ. can be regarded as two independent un­
known functions. Substituting Eq. (1.25) in Eq. (2), 
we get a system of equations for the determination 
of XJJ. and TJw The solution of this system of equa­
tions is difficult, however, because of the presence 
of the summation over the index of the Yw This 
difficulty can be evaded if we consider a special 
form of the function (1.25) without the matrices 
y/J.: 

~ = (rp + lsX) a, ~ = ii (rp* -Is/). (1.26) 

*Regarding the signs of the parameter [2 and the Lagrangian 
(and energy) see Sec. 3. 

tAn elementary particle is taken to correspond to a field 
which has the momentum k, the charge e, and the volume 
given by Eq. (1.22). 
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Equation (2) then gives 

lfL (arp I axf.L + Bf.LsX) a= 0, 

IILI5 {a-y./ axf.L + Bf.Lsrr) oc = 0. (2") 

Bf.Ls = 12 ~~f.L Is~)= 12 (ar"' I sa) (rp*rp + /y_) 

+ l 2 (arf.La x + x·'fl). 
(1.27) 

Along with Eq. (2") we must also take the system 
of complex conjugate equations. 

From Eq. (2") we can get the equations 

(arp I ax"'+ Bf.Lsx)2 a= 0, 

(ax I axf.L + Bf.Lsrp) 2 a= 0. 

If we now seek a solution in the form 
rp=cp(:1), x=x(:1), 

(1.28) 
(1.29) 

(1.30) 

for the system of equations (1.28), we can satisfy 
Eq. (1.29) with 

rp' = "'J• "'J' = rp, rp2 + "fJ2 = const, 

Bf.L5 = ia"'s = const, 

and we get for the solution 

~ = iY•"a (s), ~ = ll (s) e'y,a 

(1.31) 

(1.32) 

The length k~ is determined from the equations 

(1.33a) 
or 

(1.33b) 

The eigenfunctions a ( s) themselves must be de­
termined from the equation 

(1.34) 

which in the case (1.33a) gives a = Yv ( kv- av5 ) a', 
where a' is an arbitrary constant spinor. In the 
case (1.33b), on the other hand, Eq. (1.34) is solved 
in just the same way as Eq. (1.5) with the supple­
mentary condition (1.13). We find as the result 

(w- ia45 -sE (k + a35)) a= 0. (1.35) 

For the eigenvalues w we get* 

w = ssk + s (isa45 + saas). (1.36) 

If we now fix a (s) in the form (1.16), we find 

w = ss (k + aas). (1.37) 

Let us determine the momentum, charge, and 
energy of the ffeld that correspond to the solution 
(1.32) and (1.16). We have 

(1.38) 

*An eigenvalue cu is also obtained from Eq. (1.33b), which 
with the condition (1.13) gives (icu + a 45 ) 2 + (k + a,5 ) 2 ~ 0, i.e., 
cu = k + ia45 + a 35 (s = E = 1). 

and, using Eq. (1.17), we get 

G = 0, Q = Ne, E = --+ (Nl 2L-3)N, (1.39) 
w = SE (k- sw0), 

Wo =- sa35 = l 2N L-3 , (iir4a) U =- sl2a35V = N. (1.40) 

From these results we find for k = 0: 

G = 0, Q = Ne, -E0 = + Nw0 , w = sw0 • (1.41) 

Let us now again determine the energy contained 
in the fundamental periodicity volume (1.22). For 
k = 0 Eq. (1.22) gives L = 21r/w0 = ZN112 (27r)-1/2. 
We get 

Q = Ne, w0l = N-'f, (2rc)'1•, Eol =- -i; (lw0) N. (1.42) 

In the case N = 1 we again arrive at the charge 
and mass of an elementary particle: 

kol = V21t'1'~7.84, Q =e. (1.43) 

E0 (N = 1) = -k0 , w0 (N = 1) = k~ = 2ko. (1.44) 

The Nonlinear Scalar Equation 

1. Let us consider the scalar equation (2a), or 
for the sake of generality the equation 

(2a') 

The solution of the equation (2a') in the form (1.3) 
for real A (lP, 1/J) is given by Eq. (1.4) with 

(rl'-kf.L- ik0) a= 0, k~ =- k~ =- A2 (p0), 

• 
Po = 1'o1'o· (1.45) 

Equation (2a') also has a solution of a different 
form, which can be obtained by the method of inte­
gration.4 We must introduce new functions <P and 
7p by the formulas* 

1 a<p 1 
Cj!=tp-1!•-;)X-A(' ')' 

1'- 'i'·'i' 

(1.46) 

*Here on the assumption q> = a<l>, (jj =a <I>, A(lfj, 1/J) = A(p), 
p ~ (~¢) the integrated equation is of the form4 

( a• I ax2 - A 2 (p) + A-1 (p) ~~_a_) <I>= o 
1'- dp ax!'- ax!'- ' 

where in the case of Eq. (2a) the quantity p is determined from 
the algebraic equation 

p3- Caa) <l>2p2 + [-• (aa) (a <I> I axl'-) 2 = 0, 

which, as can be shown, has a single real solution for 
(ia<l> I axJJ-)2 > o. 
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If we now look for cp ( xfJ. ) in the form* cp 
= cp(a)a, cp =acp*(a), then Eq. (1.46) is written 

~=(cp-rfl.k11ko1x)a, qi=a(cp·+rp.kp.ko1x·), (1.47) 

where cp and x can be regarded as two independ­
ent unknown functions.t As solutions we have x 
= 0, cp* cp = const, which reduces to Eq. (1.4), and 
alsot cp=cpocos (a+c), x=cposin(a+c), i.e., 

~ = (cos (cr +c)- r 11k11k01 sin (cr + c)) a, (1.48) 

where a is an arbitrary amplitude, and k~ = - ~ 
= A2 (Po). 

2. Let us determine the momentum, charge, and 
energy of the field (2a) with the Lagrangian 

£ = -+ (~ (D~)- (4>D) ~-12 (~4)2}. (1.49) 

In the case of the solution (1.4), (1.45) we find 

G=k(ar4a)U, Q=e(ar4a)U, 

(1.50) 

and after the normalization N = (ay4a) L3 we get 
(aa) = NL -a (w0/w) = k"oz-2, 

G = Nk, Q = Ne, E = -i- Nw (1-f (k2 I w2) )• 

W=NL-312• (1.51) 

Finally we get for the charge and mass of the ele-

*If we look for solutions in the fonn <P = <P <e-) a, <P* = aQJ(€), 
e- = -x~, then Eq. (1.46) gives 1/J = (<P:+- Yp.XJJX)a, 
lfi = a(Ql- Yp.XJJX), p = (1/il/J) = (aa)(Ql2 + e-'x2 ), and from Eq. 
(2a') we find 

4z + z;x' +A (p) 'P = o, 
2cp'- A (p)z = o. 

(a) 
(b) 

In the case A{p) = l'(ifn/1) the equations (a) and (b) coincide 
with the equations obtained by Heisenberg.5 If we now elimi­
nate A{p) from Eqs. (a) and (b), we get 

z' = - p'! 3 (a a) (c) 

and then substituting Eq. (c) in Eq. (a) we find 

f,p" + 4p'- A (p) V- p' (3p + ~p') = 0, p' _ dp 1 dE,. 

With a special choice of A(p) it may be possible in this way 
to find also the corresponding exact solution of Eq. (2a'). 

t Then Eq. (2a') gives 

j,.,_ktL (?' + k01A (p) z) a= 0, 1tLktL (z' +A (p) ?kok;2 ) a= 0, 

P =Po+ P1> Pr = (tla) (?*?- k~k01x*z), (A) 

p2 = (iij tLk!La) ('?*z- z*?l· 
We must take along with Eq. (A) the system of complex conju­
gate equations. It is easy to show further that 

9*? + x*z =cons!, 9*z- z*? =cons!, 

p = p0 =· cons!, k~ =- k~ =- A2 (p0). 

+It is easy to verify that 

a d - d " - 2 
axiL (·.,·,.,.y) =do (<h:~k.,.y, =do (ii (?'- z'k~ I koi a) = o. 

mentary particle 

~~- '! 0=0, Q=e, k0l= r 21t '=7.84. 

In the case of the solution (1.48) we have 

G = k(aa)~U. Q = e(iir4a) U, 
Wo 

(1.52) 

E = ( w- ~ ( :o) (iia)) (aa) ( :J L -3 (w0 =k0) (1.53) 

and after the normalization (aa) ( w/ w0 ) L - 3 = N 
we find* (ay4a) = NL-3, 

G=Nk, Q=Ne, E=+Nw(!+(k0 lw) 2), 

(1.54) 

Determining the energy in the volume defined 
by Eq. (1.21), we again arrive at the results (1.52). 

Dependence of the Rest Mass of the Elementary 
Particle on the Degree of Nonlinearity 

To find the dependence of the rest mass of the 
elementary particle on the degree of nonlinearity, 
we call attention to the fact that when A (if), lf!) is 
an arbitrary function of p = (if}lf!) the functions 
( 1.4), (1.45), and (1.48) are also solutions of the 
general equation (2a'). The Lagrangian density 
corresponding to Eq. (2a') can be written in the 
form 

.13 =-+ {~ (D~)- (~D)</!+ [B (p)- pdB (p) I dp]}, (1.55) 

where p = l (if}lf!) and B (p) is an arbitrary func­
tion. 

From the Lagrangian (1.55) we at once find the 
field equation (2a'), in which 

A (p) = tLdB (p) i dp, 

and the expressions for the momentum, charge, 
and mass take the forms 

r. = !v·k, Q = Ne, E = (w- [A (p0) -lp01B (p0)1) N, 

N = (lir4a) U, w2 = k2 + w~, 
W0 =A(p0), Po= lNL-3 (w0 jw). (1.56) 

For k = 0, N = 1 we obtain as the charge and 
mass of the elementary particle 

Q = e, k0 = (l / 2p0) B (p0) (w0 (N = 1) = k~). (1.57) 

From the conditions 

Po= L-3 • k~ =A (Po)= (l I 2?o> B (Po) 

with the additional requirement L = 2rr/k0 we get 

(1.58) 

For a prescribed form of the function B ( p ) we 

*Since the a(s) are arbitrary functions, they can be taken to 
be the solution of Eq. (1.45). 
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can use Eq. (1.58) to express p0 = ('aa) in terms 
of absolute constants. For example, taking B (p) 
in the form 

we get 
Po= (4rr I n)3/(3n-4) z-4/(3n-4), 

' A 1 ?0 = A (p0) = 2ntp~-t 
= + (4rr)(3n-3)/(3n-4) z-nj(3n-4)n-1/(3n-4), 

and the mass of the elementary particle is 

that is, 

k An 12 1 ['n-1 k'l o = Po Po = 2 Po = o n, 

k ln/(3n-4) _ 1 (4 I )(3n-3)/(3n-4) 
o -2 rr n . 

(1.59) 

(1.60) 

(1.61) 

Let us note some features of the function (1.61). 
For n = 1 (linear theory) Eq. (1.61) gives koz-1 

= Y2, in complete agreement with reality. For 
n = 2 [the case of the nonlinear equation (2a)] we 
get kol = 21/ 2 rr3/ 2 r:::: 7 .84, as was to be expected. 
For n - oo we find 

z'''ko (n _., oo) _., + ( 4rr 1 n)n-->oo _., o. 

For n - 0 we have 

k0 (n-'> 0)-'> T ( 4rr I n)n-->o-'> oo. 

Thus in this interpretation we can get any value of 
the mass by varying the degree of nonlinearity n. 
For example, we can use for the neutrino the case 
of an infinite degree of nonlinearity, and for the 
electron the case of a finite but very large value 
of n. 

The function (1.61) is meaningless for one case, 
n =% (the Glirsey case7 ), i.e., for 

B (p) = p•;, = ['1· (~~)·; •. (1.62) 

The peculiarity of this case is that there is now no 
need for the requirement (1.22). The expression 
analogous to Eq. (1.22) is obtained automatically. 
Besides this, the parameter l of the nonlinear 
term is a dimensionless quanfity in this case, and 
the length L plays the role of the dimensional 
parameter in the theory. In fact, in the case (1.62) 
Eq. (1.56) gives the relations 

G = Nk, Q = Ne, E = (w + tt?;{·) N, N = (a14a) U, 

Po= l (O.a) = lN L - 3 (w0 1 w), w0 = f- z'1' (N (w0 I w))'1•. 

From these we find for k = 0, N = 1 

G =0, 

and the condition analogous to Eq. (1.22) is 

Lk' = ~ z'1• (1.22') 0 3 • 

Equation (1.22') becomes identical with Eq. (1.22) 
for a suitable choice of the constant* z413: 

f'/, =3rr, (1.63) 

2. ON THE THEORY OF THE FUSION OF NON­
LINEAR FIELDS 

The introduction of a single fundamental spinor 
field as the basis of the theory of elementary par­
ticles requires the definition of some procedure 
for getting other fields from the fundamental field. 

As has been pointed out in reference 8, the de 
Broglie fusion method, together with the use of 
group theory, indicates a possibility for such a 
procedure. Group theory is too general, however, 
and in particular does not fix any connection be­
tween the nondifferential parts of the equations of 
the various fields. For example, if we start the 
fusion with Eq. (2a), group theory will give no in­
formation about the concrete form of the nonlinear 
terms in the equations obtained after the fusion. 
For this reason in the present paper, in dealing 
with the problem of the fusion of nonlinear fields, 
we apply the second, fundamental, fusion method 
of de Broglie, which can be called the "method of 
fusion of equations. "6 

If we take two spinor fields ~f0 and 1/J~> that 
obey the linear Dirac equation, we can form a func­
tion 1/Jik = ¢fl > 1/J~ >, which is a component of an 
undor of the second rank ( ljJr ) , so that ( ljJr ) obeys 
the Dirac equation or the corresponding Klein­
Gordon equation. The undor ( ljJr) can be expanded 
in the following way: 1a 
(cpr) = loCflo + lsCfls + ll'-Cflfl. + lfl.l5Cflfl.5 + Clfl.vCflfl.v· = Lj 8acp.i, 

cx.=l 

lo = 14• (2.1) 
where (}a is one of the sixteen independent Dirac 
matrices. 

Let us now consider fusion, starting with the 
nonlinear Dirac equation 

(2.2) 

As in the case of the linear theory, we consider 
two fields ~f0 and 1/J~> that satisfy Eq. (2.2) and 
the adjoint equation. We form the function 1/Jik 
= "¢f0 1/J~> and go over to the undor equation 

(lfl.a I ax[J. + iio (~. ~)) (~r) = o, 
(2.3) 

If we now impose on ko ("¢, 1/J) the requirement 
*It is easily verified that Eq. (1.62) with the value (1.63) 

inserted, i.e., the function B(p) = 3rr{i 413, is a solution of 
Eq. (1.58). 
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ko (~, 4) = ko (01), 4<2>) = ko ((J/2>, 4°>) = ko (~< 1 >, 4<2>) (2.4} 

and use the fact that when we confine ourselves to 
the lowest powers of the invariants ko (~j<1>, l/!<2>) 
has the form3 

16 

ko ((j/1>, (ji2l) = ~ }."6" Wl)6r.t4(2)), (2.5) 
CI=l 

where A. a are arbitrary constants, we arrive at 
the conclusion that ko <¢<1>, l/!<2>) is also an undor. 
Let us now choose the constants A.a so that 

'A" (~(1)6"4<2>) = A0qlr.t· 

Then Eq. (2.5) can be written in the form 

k0 Wll 4<2>) = 'Ae (4f). 

(2.6) 

(2. 7) 

Substituting Eq. (2.7) in Eq. (2.3), we get the non­
linear undor equation 

('ly.8/8Xp. + A0 (4f)) (4f) = 0. (2.8) 

Applying the operator Yv8/axv to Eq. (2.8), we 
find 

(2.9) 

Let us now consider the expression 

(4f) 2 = 9~ + rp; + rr!- ql!s + (crp.vqlp.v) 2 + f ( ... ), (2.10) 

where f ( ... ) denotes terms containing mixed de­
rivatives of the various fields. In a similar way 
we get for ( lf!r )3 

(4f)3 = loql~ + lsql~ + lp.qlp.qle -'lp.lsql~'-'cp'~ 

+ criJ.,qlp.v (crr.t~qlr.t~) 2 + U ( ... ). (2.11) 

The mixed derivatives of various fields lead to 
a nonlinear interaction of these fields. In the case 
in which we consider only the self-interactions of 
the fields, the quantities f ( ... ) and U ( ... ) are 
to be neglected. We then get 

(2.12) 

where cpa is one of the components of the undor. * 
We have previously considered" an expression 

of the type of Eq. (2.12) and have shown that it 
leads to a spectrum of meson masses. 

*If we take into account the fact that according to field 
theory there are three relations' between the invariants q1~, 
m2 m 2 m 2 m 2 we can put the expression (2.10) in the form 
'YSI 't"J.LS' "t'J.L I "YJ.LV 1 

(<j;f)Z = Gtl'P~ + Gt2'!'~ + t ( ... ). 
Then Eq. (2.11) will have the corresponding fonn 

(<j;r)3 = Gt1jo'll~ + Gt2js'?: + U (. · .), 
and instead of Eq. (2.12) we get 

3: THE CONFORMAL INVARIANCE OF THE 
NONLINEAR EQUATIONS 

As a rule nonlinear equations possess the prop­
erty of so-called conformal invariance, which 
makes it possible to go from one particular solu­
tion to another by a simple change of scale of the 
coordinates. We have already called attention to 
the property of conformal invariance of the non­
linear meson-field equation 

(3.1) 

in an earlier paper, 9 where in particular we showed 
that if If! (xJ.L, A.) is a solution of Eq. (3.1) then the 
function 

(3.2) 

is also a solution of that equation.* 
Let us introduce coordinate transformations · 

(regarding the nonlinear parameter as a fifth co­
ordinate): 

The invariance of Eq. (3.1) under (3.3) gives 

4' (x', 'A') = S (AB) 4 (x~'-, 'A), 

where S ( AB ) satisfies the conditions 

ss-1 =1, S2A 2B=l, s-1 =AB';,, 

which also leads to the expression (3.2). 

(3.3) 

(3.4) 

(3.5) 

Let us use the property of conformal invariance 
of the field equation to derive conservation laws. 
According to Noether's theorem, for this we need 
invariance of the Lagrangian function under the 
trru;tsformations in question. 

Under the transformation (3.3}, (3.4) and the 
condition (3.5) the Lagrangian of Eq. (3.1), 

(3.6} 

transforms according to the formula 

£1' [c)'' (Ax~'-, 8),)1 = g (AB) £l [y (x~'-, 1.)]. 

*From this it follows in particular that the functions 
Ac{!(Ax , >.) and By, c{l (x , B>.) are solutions of Eq. (3.1). For 
example, the second of tlrese fonns expresses the fact that 
the solution of Eq. (3.1) can contain the nonlinear parameter 
only in the combination >.<:p~ , where <Po is the amplitude of 
the solution. 
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From this we get* 

.B (f.)= B'i!c (Bf.), g (AB) = g (B) = B-1 • (3. 7) 

Confining ourselves to the case B = + 1, s-1 ( AB ) 
= s-t (A)= A, we find 

y' (x~, f.) = S (A)~ (x"", 1-), 

(3.8) 

Let us now introduce the representative operator 
T (A) and write 

y' (x~, ).) = T (A) cji (x"", ),) = S (A) </1 (A-1xp., f.). (3.9) 

Confining ourselves to a consideration of the con­
tinuous group, let us introduce a small parameter 
a by the relation A= 1 + a, and also the infini­
tesimal operators t J and S; we then find from 
Eq. (3.9) 

Let us now consider the case of the nonlinear 
spinor equation 

(3.10) 

(3.11) 

The conformal invariance of Eq. (3.11) was pointed 
out recently by Heisenberg and his coworkers. 1 

They also made an attempt to connect the confor­
mal invariance of Eq. (3.11) with a definite conser­
vation law. Here we shall consider the conformal 
invariance of Eq. (3.11) in a different aspect, in 
particular in connection with the meson field equa­
tion (3.1). 

The Lagrangian function corresponding to Eq. 
(3.11) is 

2 = ~ ~ {411'- ;;"" - :;~ 11'-cf + l~ (hi'-'roW + l~ (~4) 2} (d4x). 

(3.12) 
Under the transformation (3.3) the quantities 
1/J (x/-l, Ai) and .B [1/J (x/-l, Ai)] transform accord­
ing to the formulas t 

*It may be helpful to indicate the analogy with the linear 
theory, in which the field equation is invariant with respect to 
the transformation 

•V (xi'-, ko) = N'l•'f (xp., ko), 

where N is a number. Under this the Lagrangian function 
transforms in the following way: 

.\'' [N'iz<j!' (x!'-' ko)] = N~ ['f (xr.t, ko)], 

which gives the possibility of introducing the number of par­
ticles. In reference 9 we have used the analogy ofthese 
transformations with Eqs. (3.4) and (3.7) to introduce the num­
ber of particles N = B in the nonlinear field theory. 

tJ = a'f(<l )/a<lia• O• S = as(a)/a<lla•O• and, as follows from 
Eq. (3.9), the eigenvalue of Sis +1. 

t As we see, the transformation (13) also gives the possi­
bility of introducing the number of particles N = BA-2 

4' (Ar"", Bl-1) = S (AB) 4 (x"", 1-1), 

s-1 (AB) = V AB, /..; = l~; 

2' W (Ax"", B/..1)] = g (AB) ~ [~ (x"", /..1)], g (AB) = A2fB. 
(3.13) 

Taking g (AB) = 1, A2 = B, i.e., S ( AB) = B-3/ 4 

= A - 312, and introducing the representative oper­
ator T (A), we get 

4' (x~, f.~)= T (A) 4 (x"", >..,) = S (A) 4 (A-1x"", A-2/..;). (3.14) 

Introducing the small parameter a = A - 1 and 
the infinitesimal operators J and S, we find* 

{J- (S -~""(JjiJx"" -l;iJfiJlt)} 4 (x"", I.;)= 0, )..,. = Lj. (3.15) 

As the eigenvalues of the operator S we get + 1 
for bosons and -% for spinors. 

We now turn out attention to the sign of the non­
linear parameter lf. It follows from Eqs. (3. 7) and 
(3.13) that if B = -1 the Lagrangian merely 
changes sign, and therefore as long as the sign of 
the Lagrangian does not impose any conditions on 
physical processes both signs are permissible in 
nonlinear equations. 

In conclusion I express my gratitude to D. Ivan­
enko for a discussion on the nonlinear theory. 

Note added in proof (December 12, 1959). In­
troducing the operator pl/J = ( J - S) 1/J = pl/J and the 
new coordinates ~j (x/-l, li) [in the case of Eq. 
(3.10)], or ~j (x/-l) [in the case of Eq. (3.15)], we 
can write Eqs. (3.10) and (3.15) in the form 
( {jB/B~j + p) 1/J = 0, with the solution 

(a) 

where c1, c2, c3, A are arbitrary constants, a1 

= kj~j• and a2 =- ~j~j· Now comparing Eq. (a) 
with the particular solution 1/J = A -t/2 ai112 of Eq. 

*The compatibility of the quantum number and the con­
formal invariance require that the conformal transformation 
operator commute with the translation operator. Generally 
speaking these operators do not commute, but Heisenberg' 
prescribes the transformation of translation in the form 

X~= XI'-+ a./1, 

and since in the case of Eq. (3.11), according to Eq. (3.15), 
li transforms in just the same way as xJJ.' the operators do 
commute. In the case of Eq. (3.1), according to Eq. (3.9), 
prescription of the translations in the form (a) does not lead 
to commuting operators: instead of (a) we must write 
x~ = xJ.I. + <l<p0 , where <p0 is the amplitude of the solution, 
which, according to Eq. (3.9), transforms just like xw 
In the case of Eq. (3.11) the translation can be prescribed in 
the form x~ = xJ.I. + <l<p0 21~ where <p0 is the amplitude of the 
solution, which, according to Eq. (3.15), transforms just 
like x 213 and secures commutativity of the operators of 
translation and conformal transformation. 
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(3.1) and the particular solution 1j! = ccr21/ 4 x 
{ 1 + yJ.LxJ.Lcr21/2} of Eq. (3.11) (with cr2 = -x~ + l~ 
~ -x~), we find p = 1 for bosons and p =% for 
spinors. From this we get for the eigenvalues 

P = (1/2) , s = (- 3/2) spinors • 
\ 1 1 bosons 

If in the derivation of (4.16) (sic) we start not 
from (4.15) (sic) but from 

cp' (x~, A~) = T (B) cjl (x"', A1) = S (B) cjl (r'1•xlL, B-1A1), 

we again arrive at Eq. (3.15), but now with J re­
placed by 2J. 

The results obtained also remain valid if in­
stead of from Eq. (3.12) we start from the nonlinear 
Lagrangian (1.59), where, however, it is expedient to 
introduce instead of l the parameter 

which has the dimensions of kQ1 ( kol1 = const, 
B (p) = 37rlt3n-4 (~1/!)n). 
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