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The techniques of many-body theory are applied to a study of pair correlations in fi~ite sys
tems with an odd number of particles. The Green's function is found, and perturbatiOn theory 
developed. 

PROPERTIES of low-excited states of Fermi sys
tems with an even number of particles differ essen
tially from those of systems with an odd number of 
particles. If one considers the application of many
body theory to nuclei, then one encounters the prob
lem of finding the Green's function for odd systems 
in order to calculate the moments of inertia, mag
netic moments, excitation spectra and electromag
netic transition probabilities in odd nuclei. Migdal1 

developed techniques for studying pair correlations 
between particles in finite systems with an even 
number of particles. In the present work, the ex
tension of these techniques to finite systems con
taining an odd number of particles is considered. 
The Green's function is calculated for such sys
tems and perturbation theory is formulated. 

For our purposes, it is convenient to write 
Gor'kov's system of equations2•1 separately for 
the Green's functions G+(x1, x2) and G-(xt, x2) 
respectively for T = t1 - t2 > 0 and T < 0. 

ua 1 a-r - H) a+ - i f:1F+ 

= o, (iafa-r + H* -2p.) r+ + il:!'a+ = o, 

ua /a" - H) a-- i I:!F-

= o, ua ta-r+ H*- 2p.) p- -:- it!J:a- = o. 
1:1* = rf (rl, rz, "=) IT=O• 

where 

a-( ) . (mN .! + ( ,. , ,r (x ) m·\) 
X1o X2. = l 'Vo' Y -'2 1 Y 1 'Vo • 

f+ (Xi, Xz) = (11>~+2 , ~+(xi) V (x2) cD~), 

p- (xl> x2) = - (cD~, ~+ (x2) ~+(xi) cD~-2). 

(1) 

(2) 

(3) 

Here <I>r is the wave function for the ground state 
of the N -particle system; 1/J ( x), 1p+ ( x) are par
ticle annihilation and creation operators in the 
Heisenberg representation. At t = 0, one has the 
usual commutation relations for 1/J ( r, t) 
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{~ (rl), ~+ (r2)} =a (rl- r2), 

{~ (r1), ~ (r2)} = {~+ (r1), ~+ (r2)} = 0. (4) 

The chemical potential is defined b:y-
P· = 1/ 2 [E0 (N + 2)- E0 (N)], 

where Eo ( N) is the ground -state energy of the 
N- particle system. The parameter y character
izes the effective interaction which leads to the 
pairing. We will assume D. to be constant in our 
system. 

We are interested in comparing properties of 
systems of different parity in particle number; 
therefore, we neglect everywhere differences in 
properties of neighboring systems of the same 
parity. Boundary conditions on G and F can 
be written, using their definitions (3) and commu
tation relations (4), in the form 

i [Q+- a-]T=O = 0 {fl- f2); (f+- r]T=O = 0. (5) 

We expand G and F in terms of eigenfunc
tions of the single-particle Hamiltonian H 

a± (r1 , r2 , -r) = h at1: (-r) qJ;. (r1) qJ1.· (r2), 

I. I.' 

where HcpA, = EA'PA.· If D. is constant, only the 
diagonal terms remain in these expansions .1 

Therefore, instead of Eqs. (1), (2), and (5) we obtain 

(ia 1 a,- 8A) Gt- it::.Ft 

= o, (ia I a, + 8A- 2:1.) Ft + i 1:1· at = 0; 

1:1 * = 1 ~ F1, (0) qJ~ (r) (j)A (r); 
~ 

i[at(O)-ai"(O)] =I, p+(O)-f>:""(O) = 0. 

The solution of (6) has the form 

(6) 

(7) 

(8) 

Gt (-r) = Ci}, exp {i (E1,- :1.) -r} + Ci./. exp {- i (E1. + tJ.) -r}; 
. it. + . (9a) 

Ff. (") = E _ e C]). exp {t (EA- tJ.) -r} 
A ), 

- E i+t. Ci), exp {- i (E1, + :1.) "}. {9b) 
A e~, 

In {9b) and in the following, EA_ is measured 
from JJ. as origin. 
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Using the initial conditions, Eqs. (8), it is pos
sible to eliminate two constants: 

c~). '= c~).- i (Ei.- cj) I 2E,,, c;), = Cz),- i (E),+ 8j) / 2E),. 

In order to determine two other constants, we 
compare the solution obtained with the exact ex
pression for the Green's function of the N -particle 
system. We consider a nucleus in which there are 
Na particles with positive projection of angular 
momentum (+A.) and Nb particles with negative 
projection (-A.). An exact expression for the di
agonal part of the Green's function can be put in 
the form: 3 

a;= i 2} \(at),o \2 

xexp{-i[E,(Na+ I, Nb)-E0 (Na, Nb)]-r}, 

+ ...... ., I < + ) 12 G_'!..= 1 ..::..1 a_,_ so 

xexp {-i(E,(Na, Nb+ I)-E0 (Na, Nb)]-r}, 

a=--1.=- i 2} I (a-l)so \2 

xexp{i(E,(Na, Nb-I)-E0 (Na, Nb)]-r}, (10) 

where Es ( N ± 1) is the energy of the s -th state 
of the system of N ± 1 particles. We use the no
tation 2E0 (Na+1, Nb)- E0 (Na+.1, Nb+1) 
- E0 ( Na, Nb) = 2~. Comparing exponents in (9a) 
and (10) for G~ and G~A.• we obtain 

E1. +3=-s;1>(Na+ I, Nb), (lla) 

E1.- 3 = s(2l (Na + I, Nt), (llb) 

EI.-\-E0 (Na, Nb-\-1)-Eo(Na+l, Nb)+Li 

=-s;3>(Na, Nb+ 1), (llc) 

E).-E 0 (Na, Nb+ l)+E0 (Na+ I, Nb)-il 

(lld) 

Comparison of exponents for Gx and G:A. 
gives equations coinciding with Eqs. (11). The 
quantity Es ( Na, Nb) = Es ( Na, Nb) - Eo ( Na, Nb) 
is positive by definition. We will show that the 
condition Es ~ 0 sets definite restrictions on the 
solutions of Eqs. (9a) and (9b). 

We define the ground state of a system with 
particle number N + 1 = ( Na + 1, Nb), setting 
E~2> = EA. -6. = 0, where A. 0 is a state near to 
the Fer~i surface. Then the conditions Eqs. (11) 

take the form 

E,, + E1., =- s;1> (Na +I, Nb), 

E~.-E).,=8~2)(Na+ I, Nb), 

(12a) 

(12b) 

E1. + E0 (Na, Nb +I)- E0 (Na +I, Nb) 

+ E1., =- s;a> (Na, Nb + 1), 

E).- Eo (Na, Nd- I)+ E0 (Na +I, Nb) 

-EA,=s;4>(Na, Nb-'r 1). 

The quantity E0 (Na, Nb+1)- Eo(Na+1, Nb) 

(12c) 

(12d) 

= .6.E can be considered to be the excitation energy 
of the nucleus ( Na + 1, Nb). Then the conditions 
(12a) and (12c) cannot be satisfied for any A.. In 
accordancE: with Eq. (12b) we set .6.E = 0. Then 
the conditions (12b) and (12d) coincide, and are 
satisfied for arbitrary A.. Therefore, in Eqs. (9a) 
and (9b) we should set 

The functions G and F become 
E + e 

a:A(-r) = -i ~exp {-i(E'!.. + :.1..)1:}, 
>. 

- E'!.. -e:'!.. 
G ±I, (1:) = i -u- exp {i (E'!..- 1.1.) -r}, 

)., 

F: 1• (-:) =- 2~ exp {- i (E/.. + 1.1..) 1:}, 
/.. 

x F~'A (1:) =- 2~'!.. exp {i (E'!..- :.1..) -:}. (13) 

Since - iG~ ( 0) = PA. is the density matrix of 
the particles, it is easy to see that the solution 
found corresponds to an even system ( PA. = p_ A.). 
At the same time, from Eq. (12b) we determine 
the excitation spectrum for odd nuclei: 

where the ·quantities EA,, EA,0 contain the .6. of 
the even system. 

In a Fourier representation for T, the func
tions GA. and FA, take the form 

(£.~., + e:~,) I 2£'!.. (£'!..- ~1) I 2£'!.. 
GA(w)= w-E~.+io + w+E~.-io ' <14) 

it:. r 1 1 J 
FA(ru) = -2£1• \w- E1• + io- •~ + E1.- io · (15) 

An analogous result is obtained if we determine the 
ground state of the N + 1 particle system from 
Eq. ( 11c). 

We now consider another possibility. Let the 
ground state of the N + 1 particle system be de
termined from the relation 

- s;l) (N a + I, N b) = Et., -l 3 = 0. 

Then the conditions [Eqs. (11)] take the form 

(16a) 

(16b) 
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E,.+Eu(Na, Nb+ 1)-E0 (Na+ I, Nb)-E)., 

= -e:~3> (Na, Nb + 1), 

E~-.-E0 (Na, Nb+ I)+E0 (Na+ I, Nb)+E~-., 

(16c) 

(16d) 

Condition (16a) is satisfied only for A. = A.0, and 
condition (16b), for all A.. The quantity ~E = 

Eo(Na, Nb+1)- E0 (Na+1, Nb) corresponds to 
the minimum excitation energy of the nucleus 
(Na + 1, Nb)· Therefore, in accordance with 
Eq. (16b), ~E = EA,0 + EA,1, where A.1 is a state 
near in energy to the state A.0• Then Eq. (16c) is 
not satisfied for any A., and Eq. (16d) becomes 

E,,-EA, = e:s(Na, Nb+ 1). 

In deformed nuclei, the energy levels are doubly 
degenerate, and this relation is satisfied for all 
A. ~ A.0• Therefore, in the solutions to Eqs. (9a) 
and (9b) we should set 

ct = c;_~-. = o, ).. =1= )..o· 

ct.~-. = C;}. = o, ct-~-., = cv., = o. 
In this case, G and F take the form 
+ . E~-. -s~-. . 

G,. (1:) = -t ~on, exp {t (EA- p.) 1:} 
f.. 

E~-. +SA 
- i ---u:- ( 1 - ilt-.-A,) exp {- i (E~-. + (.L) 1:} 

' 
_ . E~-.- e1 . 

G~-. (1:) = t ~ (1- ou,) exp {t (£"- p.) -r} 
f.. 

. E~-. +e~-. . + t.---w-- o1.-;>., exp {- t (E" + p.) 1:}, 
)t 

Ft ("J = 2~ """· exp {i (EA- t.L) 1:} 
A 

- 2~ (1- o~-.-".) exp {- i(E~-. + p.)1:}, 
A . 

fA"(1:) =- 2~ (1-ol.t-.,)exp{i(E~-.-:.L),;} 
;>. 

t- 2~ oA-!.,exp{-i(E~.+p.)-r}. 
A 

(17) 

In calculating the density matrix PA.· we see that 
PA. = p -A. (A. ~ ± A.0 ) , PA.o = 0, p -A.o = 1. Thus, the 
solution obtained corresponds to a nucleus with an 
odd number of particles where the odd particle is 
in state -A.0 with probability 1, and the corre
sponding state A.0 is empty. If we determine the 
ground state of the system from Eq. (llc), then 
we obtain an analogous result with the odd particle 
in state A.0• Equation (16b) gives the excitation 
spectrum of the even system 

E:s = E;>. + £;>.,. 

It should be noted that in this case the ~ of the 
odd system enters into EA. and EA,0• Therefore, 

~ of the odd nucleus can be determined, knowing 
the value of the energy gap in the excitation spec
tra of the neighboring even -odd nucleus. 

Calculating FA. ( 0 ) , we obtain from Eq. (7) the 
equation for ~ of the odd system given earlier in 
reference 1: 

1- 'Of..f..,- 'Of..-f.., • 
I = -1 ~ 2£ cpA(r) cpt-.(r). (18) 

i. f.. 

In the Fourier representation for T, the 
Green's function of the odd system with the odd 
particle in state A.0 has the form 

(£~-. + e:~-.) I 2£~-. (£~-.- e;>.) I 2£~-. 
G~-. (w) = E "'Oil + E "'Oil ' 

W - ;>. + L /.f.., w + f.. - L /.-f.., (19) 

i/1 ( 1 1 ) 
F t-.(w) = - 2£ E + .. oil - + E .. oil '<20) ;>. CO - ;>. L /.f.., W ), - L i.-f.., 

where 

The case of spherical nuclei needs separate 
consideration. In this case the levels are multiply 
degenerate, and, consequently, EA. = EA,0 for all 
states A. corresponding to a given energy level. 
Then Eqs. (16d) and (16a) are satisfied for any of 
these A.. Therefore, in order to fill in the missing 
supplementary condition, it is necessary to turn 
to considerations connected with conservation of 
the total angular momentum of the system 

Jz = ] (jz)t-.Pt.· 
I. 

Assuming that the nucleons pair off into states of 
zero angular momentum, we find Jz = 0 for even 
systems and Jz = (jz )A.0 for odd ones. From this 
it follows that PA. = 1 and, consequently, G~0 ( 0) 
= 0. Therefore, i~ one exponent is missing in G~0 , 
then, on account of the initial condition, the other 
one will also be absent. From the condition PA. 
= P-A. for all A. ~ ±A.0, it follows that the coeffi
cient in front of the exponential, according to con
dition (16a), is zero. Then the expressions (19) 
and (20) can also be applied to the case of spher
ical nuclei. 

Migdal1 showed that for small, time-independent 
perturbations, corrections to the functions G and 
F take the form 

G~,.. = Gt.Vn·G .. :+F,Y~~-.·F~-.·+iG~-.~~t-.·F1.- + iF~-.~~·"·Gt.·, (21) 

P~~.· =- D"V~ ... f,., + F~-.Vn·G~-.· 
+ iF~-.~;.i:f,_,- iD~-.~~·~-.·0~-.·; 

~'* (r) = 1 L F~~.·cp~-. (r) cp~· (r). 
f.. I.' 

(22) 

(23) 

For an odd nucleus, G and F are determined by 
(19) and (20), and D is 
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(24) 

Substituting (19) and (20) in (21), and integrating over w, we obtain the correction to the density matrix: 

, _ V AA' (sA sA,- EAEA.)- ~2V~1: + ~(sA~~~: +sA.,'\~:.) -l- 0 , ·v n· (£A,- sA) (eA.- EA.)+ ~·v;A. + ~ ~~~·A. (EA.- E;:) +~~~:(EA.- eA)] 
PAA'- 2£,£,. (£, + E,.) • A-A, 

A A T>. T>. 2£A, (£~- £~,) 

Vu· (£A,+ s1) (£1: +eA.)- ~2v~A' +~~~;, .. (£A,+ eA. ) +~~A' (EA.+ •~;)] 
2£A, (£~,- £~) 

Vu: (£,_- s)) (s1:- £ 1.) + ~2v~,. + ~ ~~~~- (EA- sA.)+ ~~l.' (£;.- e1.)] 

2£;.(£~,- £~) 

for EA. ~ EA.'; 

sAf1 (~~;.- + ~~·;.·)- ~· (V )..).' + v;,;..) ' ' ~2 (V AA' + V~;.·) + ~ r~;A. (£;.- eA)- ~;_;.• (Et, +e).,)] 
Pm = 4£~ + (li>.'-),, T onJ 8£~ 

_L 0 , _ 0 _ ~2 Wn· + v;,t...) +~[A~;.· (£ 1,- s1.)- ~:;.· (E;. + s,_)] 
, ( A ),0 f- ),-A.) 8£3 

'A 

for EA. = EA.' . 
Analogously, we find the correction to the function F: 

(25) 

-~ {EA,vAA. + s'Av;;..)- ~:'A'(£,_£;.,+ e,_ s,_.) + ~2~~'A' ' ' ~ [(£).'- •t..·l V;.;.•- (Et,' + •A) v;):l- A~~- (Et,' + eA)(£).'- St,·)- ~2A~A' 
--~~--~~~~~~~~~~----~-,0).,') --~~~--~--~--~~~~~~~--~~--~----~~ 

2Et,E1: (Et, + Et,.) - 2£1..' (£~.- £~.) 

~[(£'A'+ Et,,) V ;.;.•- (£,,- s'A) V~;.·] + ~;~;.· (£1:- st,) (£'A.'+ s,.) +~·~~I.' 

2£1.., (E~: - E{) 

' 0 ~[(fA+ E;.o) v AA'- (E),- Et,) v;A.] +~;A. (fA- e,_) (sA,+ E).)+ ~·~~ •• 
I n, 2£/.. (£~- E~: ) 

for EA. ~ EA.' ; 

, AeA (VAl.' + V~A.)- ~;,_, (E~ + s~) + ~·~;,1: , ~ (E,_- s;.) (V AA' + V~i:) +(£,_-ely~;,;_.- ~2 --'>~1: 
F 1.1: = 4£ 3 -,- (oJ..'-1., + on,) SEa 

1 i. 

for EA. = EA.' . 
Substituting (26) in (23) and using the equality 

A 
(E 1,~·Et.) 

- 1- {·• (r) "* (r) 
2£~. i'),, '!'), 

X [ ~ (£1,- s)J (V),):+ V}.,J)- ~· ~,.),- ~;~,.(2£,_, z),, __;_ ~2)] + CFJ, (r) ;-;,, (r) [- ~ (Ei., + zA) (Vn,+ v;,;.,) 

(26) 

(27) 
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As a check, Eqs. (25)- (27) were also obtained by 
using Eq. (1) without going to the Fourier repre
sentation. 

In the present work, a theorem about the form 
of the Green's function of a nonspherical nucleus 
was proved. It turned out that, in spite of the ef
fect of pair correlations, the odd particle was in 
a definite state with probability 1, and that the con
jugate state was completely empty. However, the 
pairing of particles in the nucleus leads to the ex
citation spectrum of the nucleus differing essen
tially from that of the usual one-particle one con
nected with excitations of the odd particle: Es 
= EA - E;\_0, EA = .J 1:12 + E~ . It is easy to see that 
for small excitations ( I E;\ I < D.) the density of 
levels of the odd nucleus turns out to be roughly 
21:1/l EA I times larger than in the one-particle 
model. The formulae (25) - (27) obtained from 
perturbation theory at the end of the article are 

essential for application of the theory considered. 
They make it possible to calculate effects con
nected with the influence ·of the odd particle, e.g., 
moments of inertia of odd nuclei, or magnetic 
moments. 
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