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The behavior of spin in the elastic scattering of longitudinally polarized fermions and its de­
pendence on the character of the interaction are investigated. It is shown that in the ultra­
relativistic case (or for fermions with zero rest mass) the angle between the spin and the 
momentum is unchanged in V and A interactions, but the spin flips in S, P, and T inter­
actions. 

1. INTRODUCTION 

THE motion of a free fermion will be described by 
a Dirac wave function that takes spin orientation 
into account,1•2 

where the quantity e: = ± 1 characterizes the sign 
of the energy, and s = ± 1 is twice the projection 
of the spin in the direction of the motion. 

We represent the spin matrix bs in the form 

(
At Bt) 

b, = ~ At B, • 
V2 A, Bt 

A2 B, 

Here the energy K of the fermion is connected 
with its momentum k and rest mass k0 by the 
well-known relation K = -./k2 + ka . The rest of 
the quantities in (2) are given by 

A1 = V1 + k 0 /sK, A 2 = ssV1-k0 /sK, 

(2) 

B1 = scosS,e-i'P/2 B 2 = ssin9,e'"l2, 8, = 8;2-rr(1-s)/4, 

where e and cp are the spherical angles of the 
vector k. 

The polarization properties of the fermions 
will be characterized by the four-component polari­
zation pseudovector3 

~"- = K ~ ~"o,"~d3x, (3) 

where the matrix aJJ. of the spin pseudovector is 
equal to a and at = p1. Substituting (1) in (3) for 
the components of the polarization pseudovector, 
we find the values 

(4) 

for the longitudinal component, directed along the 
momentum, and 
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C1 = Ks1 = s-;;1ko (C:!::1C1 -+- ctc-1) = ko coso V 1- s~, 
c2 = Ks2 = So1koi (C±1cl- ctc-I) =kosin 0 v 1- s~ (4a) 

for the transverse components. Here o is the 
phase difference between the complex amplitudes 
Ci and C_ 1, and the quantity 

(5) 

inversely proportional to the normalization coeffi­
cient. The time component of the polarization is 
connected with the longitudinal component by the 
relation ?;t = ( k/K) h 

From this it is evident that the polarization 
properties of free fermions will be determined by 
two quantities: by the angle o, characterizing the 
direction of the spin pseudovector s in the plane 
perpendicular to the momentum, where 

coso=C1 /VCi+C~. sino=~2 /Y~i+C~, (6) 

and by the angle a between s and the direction 
of the momentum k, where 

V~2 + ~2 k V 1 - s2 
t 1 2 0 3 anrx =--y-= -K . 

.. a sa 
(7) 

In investigating the transverse component, 
Ascoli4 omitted from an analogous formula the 
factor k0 /K, since he considered the direction 
of a 3-component unit spin matrix 

So (~s1, ~ S2, Sa)· 

As can be seen from (4) and (5), the modulus of 
the vector s is 

Is I= Vs~ + k~K-2 (1- s~), 

where ka /K2 = 1 - {3 2, and c{3 is the velocity of 
the particle. 

(8) 
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2. CALCULATION OF THE MATRIX ELEMENTS 
INCLUDING POLARIZATION EFFECTS 

In investigating the transition of an electron 
from one initial state ( E = 1, s, k) to some other 
final state ( E1 = 1, s 1 , k1 ) we have to calculate 
matrix elements of the form 

' b'+ b 1 - ( I ) - ( f ) "(Lv = 'r:"v = 2 PI! s ' s a. s ' s ' 

where 

(9) 

(10) 

(11) 

and up,, where o4 = 1, are the well known two­
rowed Pauli matrices. These formulas represent 
a generalization of the formulas given in reference 
2 for the case of not only longitudinal, but also 
transverse polarization. 

Without loss of generality, we can let the initial 
momentum k be directed along the z axis ( () = cp 
= 0 ) and the final momentum k 1 be localized in 
the plane xz ( cp 1 = 0 ) . Then in elastic particle 
scattering ( K 1 = K) we have 

p4,a(s', s) = (1 +ss1
) + ~o (1 + SS1

), (12) 

- ( 1 ) k ( 1 - 1) (- i) P2.1 s , s = K s + ss 1 , (13) 

- 1 1 1 (cos (8' /2) ) 
0'4, n (s ' s) = 2 { 1 + SS) s (nx + isny) sin (\l' /2) + !lz cos (8' /2) 

1 1 (·-ssin(\l'/2) ) 
+ 2 ( 1 - ss ) (nx + isny) cos (G' /2)- nz sin (8' /2) ' (14) 

where n is some three-component unit vector and 
()I is the angle between the momenta k' and k. 

3. THE BEHAVIOR OF FERMION SPIN IN 
ELASTIC SCATTERING 

The interaction of a fermion with a fixed center 
can be described by the formula 

U = 1u (r). 

The matrices y = "YJJ.V determine the character 
of the interaction ( V, A, S, T, P). 

We have the following expression for the differ­
ential effective cross section, taking polarization 
effects into account: 

where 
uk'k = ~ eir (k-k') u (r) dax, 

c;. = b'+ (s1 ) jb (s), (t = b+ (s) jb (s~)' 
' 

and in the calculation of the summed (over the 
spins) differential effective cross section we must 
put into formula (15) 

(15a) 

where s0 is determined by equality (5). 
Let us examine the scattering of longitudinally­

polarized fermions. We suppose that before the 
scattering the spin vector s was directed exactly 
along the particle momentum k, that is, C s=1 = 1, 
Cs=-1 = 0. We then find what angle the vector 8 1 

of the scattered fermion will make with the direc­
tion of the new momentum k1 • 

The amplitudes characterizing the spin state S 1 

of the scattered particle will be respectively 
' '+ 1- -

C1=b l~-tvb=2piJ.(1, l)av(l, 1), 

c'-1 = fp~'-(-1, 1)~.(-1, 1). (16) 

It must first be noticed that the representation 
of the 16 independent Dirac matrices in the form 
of a product of the matrices PJJ. and (J'v (see 
references 1 and 2 ) and not in the form of the 
standard y matrices is convenient in the sense 
that the behavior of the spin (especially in the 
ultrarelativistic case) depends on the pJl mat­
rices. 

a) We consider first the interactions propor­
tional to the matrices p1 and p2• They corre­
spond to the time component of the axial vector 
interaction AT = p1(J'4, the spatial component of 
the vector interaction vS = p1(J'n (describing, 
for example, the scattering of an electric charge 
by a magnetic field), the pseudoscalar interaction 
P = p2(]'4, and the time (more precisely, the time­
space) component of the tensor interaction TT 
= p2(J'n, describing, for example, the scattering of 
a magnetic moment by an electric field. 

As is evident from (14), the interactions yS 
and AT, proportional to the matrix p1, lead to 
a matrix element that contains the factor ( 1 + SS 1 ). 

In this case, if the momentum vector k and the 
spin vector s are parallel ( s = 1 ) before the 
scattering, then after the scattering the new vec­
tors k1 and 8 1 are still parallel ( S 1 = 1). For 
the interactions P and TT, which are propor­
tional to the matrix p2, the matrix element con­
tains the factor ( 1- SS 1 ). Therefore after the 
scattering the vectors k' and S 1 must be anti­
parallel ( s = 1, s 1 = - 1). 

For the quantity s0 [see_ (15a)], characterizing 
the dependence of the summed (over spins) effec­
tive cross section, we find, respectively, the follow­
ing four values, which depend on the character- of 
the interaction (AT, P, yS, TT): 

' = _!_ ~ (1 ± cos ()' ) 
1in 2 K~ n2 ± N 2 

(17) 

where 

N 2 = 2 sin 81nznx- cos 81 (n~ + n~- n~). (18) 



122 A. A. SOKOLOV and M. M. KOLESNIKOVA 

b) Let us now consider the interactions propor­
tional to the matrices p4 and p3• To them belong 
the time component of the vector interaction vT 
= p4a4 (which describes, for example, the scatter­
ing of an electric charge by an electric field), the 
spatial component of the axial vector interaction 
AS = p4an, the scalar interaction S = p3a4, and 
the spatial component of the tensor interaction 
TT = p3an (which describes, for example, the 
scattering of a magnetic moment by a magnetic 
field). 

In the case of the vT and S interactions it 
is easy to show with the help of (4), (4a), and (6) 

that t2 = 0, cos o' = - 1' i.e.' the spin will lie in 
the plane of the vectors k and k' and in the 
quadrants for which x' < 0 (see figure). For 

the number s0 and also for the angle 01.' between 
the spin s' and momentum k', which is directed 
along the z' axis, we find correspondingly the 
values 

k2K-2 sin {J' 
tan(X' = 2 ° , (19) 

(1 + k~ I K2) cos 8' ± (1- k~ I K2 ) 

where the plus sign corresponds to the vector inter­
action and the minus sign to the scalar. 

In the nonrelativistic case kVK2 = 1 both in­
teractions, as one might expect, lead to the unique 
result 

s~ =I, tan (X'= tan6' or (X'= 8'. (20) 

From this, keeping in mind that the spin lies in 
the quadrants where x' < 0, we find, in particular, 
that for the scattering of an electric charge by an 
electric field the spin in the nonrelativistic case 
conserves its original direction (see reference 5), 

that is, in the specific case mentioned, the direc­
tion of the original momentum, s' II k. 

In the ultrarelativistic case k5K2 - 0, with the 
help of (19) we find for the vT interaction 

2 k2 9' 
tan (X' = K~ tan 2 · (21) 

For the S interaction we have 
2k2 9' 

tan(X' =- K~ cot 2 . (22) 

From this it follows that as the energy increases 
the spin in the vT interaction begins to turn around 
toward the direction of k' and coincides with this 
direction in the limiting case kVK2 = 0. 

In the S interaction, as the energy increases 
the spin begins to turn toward the direction oppo­
site to that of the momentum, and in the limiting 
case k~ /K2 = 0 the vectors k' and s' must be 
antiparallel ( s' = - 1 ) . 

For the AS and TS interactions we find 

s~ = {ln2 (I+ k~/ P) +(I- k~/ K2) N2], (23) 

, 2k~ "Vn•- N• tan (X = - (24) 
K2 ± n2 (1- k~ 1 K 2) + (1 + k~ 1 K2 ) N 2 ' 

where the plus sign corresponds to AS and the 
minus sign to TS and the number N2 is deter­
mined by the formula (18). 

In addition, in this case t2 = ( 2~ I soK) nzny ;>!o 0 
and therefore the polarization vector will form 
some angle with the (kk') plane. In the ultrarela­
tivistic case k~ /K2 = 0 and therefore the angle a' 
will tend to zero ( s' = 1) for the AS interaction 
and to 180° for the TS interaction ( s' = -1 ). 

In that way, we see that in the very relativistic 
case, when k~/K2 - 0, only the V and A interac­
tions, proportional to the matrices p1 and p4 

conserve the parallelism of spin and momentum 
in the scattering process ( s' = s = 1). In the 
case of S, T, and P interactions, proportional to 
p2 and p3, the spin after scattering changes its di­
rection relative to the corresponding momentum to 
lie opposite ( s' =- s = -1). 

It is possible that this is connected with the fact 
that in the theory of the spin -oriented neutrino2 •6 • 7 

where a spin reversal relative to the momentum 
is excluded because it would mean the transition 
of a neutrino to a nonexistent state, only the V and 
A variants are allowed. 

4. MIXED INTERACTIONS 

We want to apply the formulas obtained to the 
investigation of the scattering of fermions in the 
presence of a linear combination of interactions 
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referring to different groups, where in the first 
group we have the interactions proportional to p1 
and p4, and in the secqnd those proportional to 
p2 and p3• We have such a combination of inter­
actions, for example, in the analysis of the scat­
tering of a particle which has an electric charge 
e and a "true" magnetic moment J.1. from a fixed 
point center having either an electric charge e' 
or a magnetic moment p.'. 

In this case the interaction energy has the form 

U = e (tp ~ (a.A))- p. (p3 (a H) + p2 (aE)), (25) 

where the field created by the point center is de­
termined by the expression 

e' 
cp=-,-, e' E=-V-

r ' 
fi' A=Vx-,-

H = V x [ V x ~· J . * (26) 

First we consider the behavior of the spin in 
the scattering of a particle with an electric charge 
( e' ~ 0, p.' = 0 ) . 

Then for the matrix element entering in (15), we 
find, setting s = 1 

, , 9' 
Cs·=1 = ee cos 2 , {27) 

• ( k k2 ) 9' ( Cs·=-1 = -e' e /( -21( p. sin2 , 28) 

from which we get an expression for the effective 
cross section 

d - dQe'2 [ 2 (K2 2 9' + k2 . 2 9' ) 
a - 4 sin• (9' 1 2) k•c21i2 e cos T o sm T 

9'] + 4 (k4p.2 - k0ep.k2) sin2 2 •. (29) 

In addition, it is easy to show that the spin vec­
tor will lie in the plane of the vectors k and k', 
so that the tangent of the angle which the spin vee­
tor will form with the momentum k', will be given 
by the expression 

, k0 I (e2k0 - 2k2p.e) sin 9' I 
tan oc = e2 cos2 (9' 1 2) K2 - sin2 (9' 1 2) (ek0- 2k2 P.)2 (30) 

It is evident from formulas (29) and (30) that in 
the nonrelativistic case k « K "' k0 a fundamental 
role will be played by the Coulomb interaction, i.e., 
yT, and that therefore according to {20) the spin 
should preserve its direction, along the original 
momentum ( 01.' = (J' ). Then in the ultrarelativ-

*If we consider a smearing of the scattering center, it is 
necessary to make a change which takes into account the con­
tact term too• 

1 1 2nr~ 
- --+ ---- o (r) 
r r 3 

where ~ is the mean square "smearing." This refinement 
will not be reflected in the investigation of the behavior of the 
spin in the scattering. 

istic case k0 « K, but with J.J.k « e, the spin 
will turn aside toward the momentum k'. In the 
case of very large energies J.J.k » e, when the di­
pole terms, proportional to p2, play a fundamental 
role, the spin has to continue its turning until it 
has an orientation opposite to the final momentum 
k' ( s' = -1 ). 

Finally, we consider the spin behavior in the 
scattering of particles having an electric charge 
and a magnetic moment ( e, J.1.) on a fixed mag­
netic moment (J.J.' ~ 0, e' = 0). Here we distin­
guish two cases: 

a) The magnetic moment p.' of the scattering 
center is parallel to the initial momentum (J.J.z = J.J.', 
J.J.x = J.J.y = o ) . Then 

• 2k2fi' . 91 9' • 
C1 = - (e + 2p.k0) -x- sm2 2 cos T, C_1 = 0, (31) 

and for the effective cross section we find the value 

da = c-2 1i,-2 p.' 2 (e + 211.k0) 2 cos2 (6' f 2) dQ', (32) 

i.e., in this case the scattering of a magnetic mo­
ment p. from a magnetic moment p.' will proceed 
just as the scattering of a charge e1 = 2J.J.ko from 
a magnetic moment p.' without the spin flip rela­
tive to the momentum k'. This is connected with 
the circumstance that the matrix element an( -1, 1) 
describing the spin-flip scattering, which should 
give a basic dipole contribution to the effective 
cross section at ultrarelativistic energies k » k0, 

goes to zero in the given case. 
b) The magnetic moment p.' of the scattering 

center is perpendicular to the vector k ( J.l.~ = 0, 
J.J.J't + J.J.'l = J.J.' 2 ~ 0 ). Then 

C 2 k2 o 9' [ 1 ( + 2 k ) ' 2 9l 
1 = - K sm 2 fLx e fL o sm T 

+ ip.~(e + 2p.k0 sin2 ~~)], 

Cl 4 I 'k2 ' 2 9l 9' ( 3) 
_ 1 = - fLfLu z sm 2 cos 2 . 3 

From this we find the following values for the ef­
fective cross sections without spin flip ( s' = s = 1): 

p.~2 (e + 2p.k0)2 sin4 (9 1 1 2) + ·p.'ff (e + 2p.ko sin2 (9' I 2))2dQ 1 

das 1=1 = c21;2 sin' (9' 1 ~) 
(34) 

and with spin flip ( s' = -1) 

das·=-1 = 4 {p. I c1i)2 p.'; K2 cos2 (6' I 2) dQ'. (35) 

From formula (34) it is evident that in the case 
2J.J.ko « e the scattering without spin flip at arbi­
trary energies is basically due to the interaction 
of the charge e with the magnetic moment p.'. 

The dipole terms should appear at higher ener­
gies, J.J.K » e, when the scattering of a fermion 
takes place with spin flip. 

Our final formulas may find application in in-
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vestigating the scattering of polarized electrons, 
which along With the charge e must possess a 
vacuum, "true" magnetic moment, and also in the 
scattering of polarized protons or neutrons ( e = 0). 
It should be noted that experimental investigations 
of spin behavior in the scattering of polarized fer­
mions may help determine the character of the in­
teraction. 
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