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It is shown that an electromagnetic wave propagating along a magnetic field can penetrate a 
metal plate perpendicular to the field if the Larmor frequency is higher than the frequency 
of the propagating wave and much higher than the collision frequency, and if the electron 
Larmor radius is smaller than the wavelength in the metal. 

IT is well known that an electromagnetic wave 
characterized by a frequency w which is smaller 
than the plasma frequency w0 cannot propagate 
through a plasma. Under these conditions the 
square of the index of refraction of the plasma is 
negative. If there is a magnetic field the refrac
tive index for the wave which propagates along the 
field (if I w~ ± w I/ v » 1, where v is the colli
sion frequency) is given by: 

(1) 

Here w6 is the Larmor (cyclotron) frequency 
of the electron. The symbol ± denotes the two 
opposite senses of the circular polarization. It is 
apparent that when w < w~ the wave that corre
sponds to N0_ can propagate through the plasma. 
Thus, it is reasonable to assume that a wave char
acterized by a frequency w < w~, where ( w~- w )/v 
» 1, can propagate through a metal plate if there 
is a strong magnetic field perpendicular to the sur
face of the plate. If a plane-polarized wave strikes 
the plate at normal incidence (to the surface), a 
circularly polarized wave is transmitted through 
the plate; the refractive index (consequently the 
amplitude of the wave) depends on the magnetic 
field. 

The expression for the refractive index given 
above holds for a classical electron gas in which 
spatial dispersion is neglected. For the electron 
concentrations typical of semi-metals, and even 
more so in metals, the refractive index for the 
transmitted wave can be very large, so that ef
fects due to spatial dispersion may be quite sig
nificant. 

In the present work we investigate the effect of 
spatial dispersion on transmission of the wave. 
The analysis is carried out for the simple case 
of a totally degenerate electron gas characterized 
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by a quadratic isotropic dispersion relation. Col
lisions are taken into account in approximating the 
relaxation time; it is assumed that ( w~- w) » v. 
The analysis indicates that the spatial-dispersion 
correction is small if the following condition is 
satisfied: 

Here r 0 is the Larmor radius of an electron at 
the Fermi surface and A. is the wavelength in the 
medium. When y > % there is strong damping 
due to spatial dispersion and the usual expression 
for N is incorrect. In this case the transmitted 
wave is attenuated in a distance of several Larmor 
radii; hence the case y >% is not of interest. 
When y < 1/ 2 the amplitude of the transmitted wave 
is determined by the Fresnel formula and the bound
ary effects associated with the spatial dispersion 
are not important if the thickness of the plate is 
greater than several Larmor radii. 

The dependence of log N0_ on log (wc/w -m*/m) 
is shown in Fig. 1 for a vacuum wavelength of 2 em 
and for different electron concentrations ( n0). In 
this figure m* is the effective mass of the elec
tron, m is the mass of the free electron* and we 
= eH/mc. The dashed line denotes y = 1/ 2 • The 
region in which transmission can take place lies 
below the dashed line. The values of the magnetic 
field are given on the lower abscissa axis. It is ap
parent that at concentrations corresponding to 
those in metals (1 022 em - 3 ) transmission can be 
observed only in extremely high (approximately 
3 x 105 oe) magnetic fields; the conditions for 
transmission are much more favorable at lower 
concentrations. 

*The free electron mass m is introduced here only for con
venience in making estimates; obviously the effect depends 
only on the effective mass m *. 



118 0. V. KONSTANTINOV and V.I. PEREL' 

· log No-

!;---""'--_,___::::......_+--:log(';:; --%J 
'---o----'--~---'--(H-6z.!o' 7,') oe 

m/ 5.z1/ azr/ 
FIG. 1 

The imaginary part of the refractive index is 
given by 

N'_ = No-'1 I 2 (w~- w), w~ -= eH / m*c. 

A ray transmitted· at normal incidence through 
a plate of thickness l, which is perpendicular to 
a magnetic field, will be attenuated (in power) by 
a factor 16 N0~ exp {- 2N~ wl/c}. If the attenua
tion is not to be excessive the thickness .of the 
plate must be of order 

( )
-;1 • 

v ro cue-ro 
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we- w c v 

where A is the wavelength in the medium. 
Taking the values no = 1022 em -a, H = 3 X 1 o5 

oe, and v=3X109 sec-1, wefind l0 =3X10-2 

m/m* em. Thus, there are no serious difficulties 
from this point of view. 

The expression for the transmission coefficient 
given above applies when l ~ l 0• If however, l 
« l 0, it is necessary to take account of effects due 
to the interference of waves which are multiply re
flected from the boundaries; in this case the ex
pression for the transmission coefficient becomes 
more complicated. We shall neglect these effects. 
When the condition l ~ l 0 is satisfied the trans
mission of the wave through each boundary can be 
considered separately. 

We now demonstrate the validity of the state
ments made above. If an electromagnetic wave 
is normally incident on the surface of a metal in 
the presence of a magnetic field perpendicular to 
the surface, the electric field E ( z) associated 
with the wave inside the metal is given by1•2 

E_ (z) = E'_-(0) f eikzdk 
.. j k 2 - ro2c Ze_ (/l, u) • (2) 

-oo 

Here, for simplicity it is assumed that the reflec
tion of electrons from the surface of the metal is 
specular. The z axis is parallel to the magnetic 
field inside the metal. 

E_ (z) =Ex (z)- iEy (z), B_ = Bxx- isxy, 

and E: ( 0) is the field derivative at the boundary 
of the metal 
B_(k, w)=1+(B0 -1)F(q), 

F (q) = { [:. ++(f. -1) In!~~] ; 
q =kVpj.Q, i2=w~-w-iv, B0 = 1 +w~jw.Q, (3) 

where vF is the electron velocity at the Fermi 
surface. Using the new variable of integration in 
(2), we have 

E'_(O) \" exp(iqOz/vp) vF 
E_(z) =-10- j q•-,F(q) dq 0 . 

c 
(4) 

In this treatment the displacement current is neg
lected. Theparameter y=E0 (w/c) 2(vF/Q)2; 

when w~ » w, 'Y = (r0 /A)2, where r 0 is the 
electron Larmor radius and A is the wavelength 
in the medium. 
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FIG. 2. Path of integration. 

The contour C passes through the origin and 
is inclined to the real axis at an angle cp = 
tan-1 [v/(w~-w)]. The function F(q) has 
branching points at q = ± 1. Hence we take cuts 
along the real axis from - oo to - 1 and from 1 
to oo • It is evident from Fig. 2 that the integral 
of interest to us can be reduced to the sum of the 
residues at the poles inside the closed contour 
which has been indicated and the integral which 
encloses the left cut. A calculation shows that 
I F ( q) I < 2 on the real axis for q ::: 1. Hence, 
when I 'Y I < Y2, in accordance with the Rouche 
theorem3 , the equation q2 - yF ( q) = 0 has two 
roots in the entire complex plane taken with the 
cuts. When I 'Y I < Y2 these roots can be found by 
expanding F ( q) in powers of q. These roots 
are q1 ,2 = ± fY. The root q1 = + fY lies inside 
the closed contour. Thus 

E_ (z) = W 1H_ (0) exp (iNwz 1 c)+ A (z), (5) 

where N = ( w5/ wQ )112 is the refractive index, 
H_(O) = (ic/w) E:..(O) is the magnetic field at the 
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boundary and A (z) is the integral over the con
tour which goes around the left cut. 

When I 'Y I<% 
co 

1 3\ , n )1 A (z) = N H_ (0)'1'1• 2 rxp (iq v;z, Cf (I- q2) dq. 

When z » vFI( w6 -w) 

A (z) = ~ H _ (0) 1•;, ( :~ ) 2 exp ( i v~ z) + 0 [ ( :~ ) 3] • 

Thus, the term A ( z), which describes the 
effect of the boundary, is small when z » v F I I n I. 
i.e., at distances that are much larger than 
the Larmor radius of the electron (for w6 » w). 
The transmitted wave is attenuated by a factor of 
e in a distance 2vFiv-/Y. We may note that the 
amplitude of the transmitted wave is the same as 
that given by the Fresnel formulP.o, while there
fractive index is determined by the root of the dis
persion equation k2 - w2c-2c(k, w) = 0, as though 
the medium were homogeneous. 

A numerical solution of this equation for I 'Y I 
< % shows that there are two roots which are in 
very good agreement with the values of q1, 2 used 
above. When I 'Y I > % there are no real roots; 
the attenuation is large and the wave is not trans
mitted through the metal. 

The above analysis indicates that when the 
Larmor radius is less than a half wavelength in 
the medium the effect of spatial dispersion is to 
distort the field only in the boundary layer, which 
is several Larmor radii in thickness. Hence, one 
can neglect spatial dispersion in estimating the 
effect of deviations of the magnetic field (from the 
normal to the surface) on transmission. If the 
wave propagates at an angle cp to the magnetic 

field (normal to the surface), the refractive in
dex for the transmitted wave is given by the ex
pression N _ = w~ I w~w cos cp where w0 » we 
» w and cp « 1rl2. 

Thus, the accuracy of orientation of the mag
netic field is not of great importance. 

We may note that an expression for the re
fractive index which takes account of the aniso
tropy of the electron mass has been obtained by 
Gurevich and Ipatova.4 

The expression for E_( k, w) in (3) applies 
when nw6 « m*v~ 12. However, the quantum
mechanical expression for c ( k, w) obtained 
by the method which has been used by us earlier5 
leads to the expression in (1) for the refractive 
index for all cases which can be realized in prac
tice, even when nw6 » m*v~l2. 

The authors are indebted to L. E. Gurevich, 
M. Ya. Azbel' and M. I. Kaganov for valuable dis
cussions. 
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