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An expansion in terms of the irreducible representations of the proper Lorentz group is given 
for the representation which specifies the transformation of the wave function of a particle of 
zero mass and of arbitrary spin. 

1lHE correspondence 

'I' (p, a)~> 'f' (p, a)= exp {iacp (S, k)}'F (S-1p, a), (1) 

where S is a transformation belonging to the 
Lorentz group, p transforms like the momentum 
vector of a particle of mass 0, k = p/p, u is an 
integer or a half-integer, and cp ( S, k) is the angle 
defined by formula (1.9) in reference 1 (hereafter 
referred to as I) has, as can be easily seen, the 
group property. 

It defines the transformation law for the wave 
function of a particle of mass zero, and with spin 
component u along the direction of the momen­
tum p, under transformations of the proper 
Lorentz group. 2 

The object of the present paper is to give an 
expansion of this representation in terms of the 
irreducible (p, m) -representations (cf. I) of 
the proper Lorentz group. 

1. INTEGRAL TRANSFORMATIONS FOR PAR­
TICLES OF MASS 0 

In a manner similar to the way this was done 
in I we obtain the following system of mutually 
inverse integral transformations 

'F (p, a) = ~ dp ~ drl (n) Ypmn (p, a) fpmn, 

f 'i;1 (' d3p y' ( ) U? ( cmn = L.J J fPl pmn p, a .t p, a), 

(2) 

(3) 

where fpmn transforms according to the irreduc­
ible representation ( p, m) of the proper Lorentz 
group, and we obtain the following conditions for 
determining the functions Y and Y': 

Ypms~•n (S~ 1 p, a)= exp {imcr (S, n) 

- ir:;cr (S, k)} [/( (n) / K (S~1 n)]-t-ic, 2 Ycnm (p, r:;), (4) 

where K ( n) is defined by formula (1. 9), I. An 
analogous condition for Yfnnn (p, u) is satisfied 
if we take 
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Y:mn (p, cr) = CmpYpmn (p, a). 

Both here and later a bar above a letter denotes 
taking the complex conjugate. 

We note that the function 

Ypmn(P, a)= (I j2rr)omao(l-(nk))p-J+ip/2 

satisfies expression (4). 

Thus, from (2)- (5) we obtain 

'¥ (p m) = ~ dp ~ dQ (n) o (n- k) p-1+1P/2 fpmn, 

\ J3 fpmn = CP J I Pplo (n- k) p-I-iP/2 '¥ (p, m). 

Here we have taken into account the fact that 
6[1-(nk)] =27To(n-k). 

On substituting (7) into (6) we find that Cp 
= 1/47T while the integral over p in (6) should 
be taken from - oo to + oo • Thus, the formulas 

+oo 
'I" (p, m) = ~ dp ~ dQ (n) o (n- k) p-HiP/2 fpmn, 

-oo 

f =- -o(n-k)p-I-ip/2'F(p m) 1 ~ J3p 
pmn 4rc I pI ' 

(5) 

(6) 

(7) 

(8) 

(9) 

give a solution of the proposed problem; it turns 
out to be simpler than in the case of non -zero rest 
mass.* 

2. COMPARISON OF THE RESULTS OBTAINED 
HERE WITH THOSE OF I 

We compare the results obtained here with for­
mulas (4.1), I and (4.2), I for M = 0 ( M is the 
particle mass). A direct transition to the limit 
M- 0 in the formulas indicated above is impos­
sible. Instead of this we shall carry out the follow­
ing formal manipulation of those formulas: we 

*In the case m = 0 the same representation (p, 0) is in fact 
contained twice in the result obtained, since the representa­
tions (p, 0) and (0, p) are equivalent. The transition between 
these two representations is given by formulas (14) and (15) 
with m = 0. 
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carry out the transition to the limit M - 0 in the 
factor R ( Lp, n), we introduce a new variable of 
integration p/M (retaining for it the old notation 
p) and we replace the factor .J1 + p2 - p · n by 
p- p · n. If we now introduce the components of 
the wavefunction having a definite component of the 
spin along the direction of the momentum we shall 
obtain 

0 

q· (p, m) = ~ dp ~ dQ (n) 

[ l-l+iP/2 imO (p, n) ( )s+m--
X P - pn e \- '? -p-mn' (10) 

- f'" + (2m) 2 \ d3p 
?-.o-mn = (!m)" J !Pl. 

X [p _ pn]-1-ip/~ e-ima (p, n) ( _) s+m '1? (p, m). (ll) 

Here 

(12) 

where ~' (p, cr) is the wavefunction utilized in I; 
the notation Db ( k) is also explained there. In 
the derivation of formulas (10) and (ll) the follow­
ing equation was used: 
[IY (k)-1 D' (Lpn)D' (n)]m, 

-- -> Dm, -n (- l)s+mimO(p, n)' (13) 
Al-•0 

where (} ( p, n) is defined in Appendix B. 
We shall compare the expres.sions (8) and (9), 

obtained above with (10) and (11).* From the func­
tion fpmn which transforms according to the 
( p, m) representation we go over to the function 
r.p -p-mn• which transforms according to the 
(- p, - m) representation. We make use of the 
fact that the representations ( p, m) and ( - p, - m) 
are equivalent. Therefore the function l.fJ-p,-m,n 
may be obtained from the function fpmn by the 
following unitary transformation: 

Y-p, -m, n = ~ Upm (n, k) fpmk dQ (k), (14) 

fpmk = ~ Dpm (n, k) '?-p, -m, n dQ (n), (15) 

where 

Upm (n, k) = ~ 
21 + 1 
~~ 

l;>)ml a=-1 

r (l + 1 + ip 1 2) -~ 1 
X r (l + 1 _ ip :, 2) D,, -m (n) D,m fk). (16) 

*It is proved later that (10) and (11) are not equivalent to 
(8) and (9) (and are therefore incorrect). We emphasize that 
this by no means indicates that the results of the present paper 
contradict those of I; it merely means that the formal manipula­
tion which leads to (10) and (11) is not justified. 

The function U is discussed in Appendix A 
and satisfies the following unitarity condition:* 

~ Vpm (1, n) Upm (l, k) dQ (I)= o (n- k). (17) 

On substituting (14) and (15) into (8) and (9) we 
obtain 

<p_P. -m,n = :" ~ ~;~ p-I-iP/2 Upm (n, k) 'F (p, m), (18) 

co 

'f (p, m) = ~ dp ~ dQ (n) upm (n, k) p-l io+iZ cp -p, -m,n. (19) 
-co 

We substitute into (18) and (19) the following 
formula derived in Appendix A: 

Upm(n, k) = Apm [l-(nk)]-l-ip/2 Qm(n, k), 

where 

Apm = 2J+ip'2 r (m + I + ip I 2) I 4-..r (m-ip I 2), 

(20) 

(21) 

I 2/ + 1 -1 I 
Qm (n, k) = m ~ ~ 1 (I + i) D"-. -m (n) Da.m (k). (22) 

1?-lml 17.=-1 

We then obtain 
_ _.!___ (' d3p -1-ip!2 A 

Cfl-p, -m, n - 47t ~! p 1 P pm 

x [I - (nk)]-I-ip'2 Q~ (n, k) 'f (p, m), (23) 
co 

'f (p, m) = ~ dp ~ dQ (n) p-HiP/2 Apm 

X [I - (nk)]-1~-ip 2 Qm (n, k) '?-p, -m. (24) 

Since 

and 
I A I 2 _ 1 ( 2 -1- 4 2) 

pm[ - (4r.)2 p . m 

Qm (n, k) = e-imO (n. k) (- l)s+m (25) 

( cf. Appendi~ C), (23) and (24) differ from (10) 
and (11) only in that the integral over p in (23) 
and (24) is taken between the limits from - oo 

to oo. 

In particular, for m = 0 each irreducible rep­
resentation ( p, 0) occurs twice in the expansion 
under consideration in contrast to the case M .,e 0. 

APPENDIX A 

DEFINITION OF THE FUNCTION Upm(n, k) 

It may be easily shown that from the fundamen­
tal relations (14), (15) and the transformation law 
for fpmk and r.p -p, -m,n the following functional 
equation for Upm(n, k) may be obtained: 

*In particular, for m = 0 we obtain the following simple in­
tegral representation for the 8-function: 

~ (' [1- (ln)]-1+1P12 [1- (lk)]-1-ip/2 dQ (I)= o (n- k1 
(47t)' .) 

[cf. also formulas (A.4) and (A.6)]. 
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Upm (S-1 n, s-r k) 

= Upm (n,k)[K(n)K(k)IK (S-1 n)K(S-Ik)J-r-ip/2 

x exp{im[cp(S,n)+cp(S,k)]} (A.1) 

(the notations K (n)/K (S-1n) and cp (S, n) are 
defined in I). Since the functions Dhm ( k) for 
l = I m I, I m I + 1, . . . and for fixed m form a 
complete system, U may be represented in the 
following form 

U "" "' .--:-[ [' pm (n, k) = £.J ..;J Xlrx1',3 Drx. -m (n) D:1m (k). 
la. l' [3 • 

(A.2) 

On taking in formula (A.1) for S the pure rotation 
S = R we obtain on taking into account formula 
(1.9b), I, 

Further, we take in (A.1) for S the infinitesimal 
pure Lorentz transformation L: 

L-1 n=(n+IP)I[l +(nip)]. 

It can then be easily seen that 

K (L - 1n) I K (n) = 1 + (ipn). 

Since according to (1. 9d), I 

/"'~ (L. k) D~m (L - 1k) = ~ D~y (R (L, k)) D~m (k) 
y 

we obtain from (A.1) and (A.2) 

2J XziX-m (n) D~m (k) = [K (n) K (k) I K (L -r n) K (L -r k)]r+ip;2 

"1;'1 -z -~ 1 z 
X ..:.J XzDrxy(R (L, n)) Dy-m (n) Drxs (R (L, k)) Dsm (k). 

(A.3) 

The parameter of the rotation R occurring in the 
above is defined by formula (A.4), I: 

D1 (R (L, k)) = e-i(H<X) .c::::: 1- i (H~), ~ = [kx l'fi]. 

We then obtain from formula (A.3) 

ljx;I5;, -m (n)D~m (k) = [1- (1 + ip 1 2) ip (n + k)] 

X 2J Xz {[I- i (H1 [n X reD] D1 (n)}o:, -m 

X {[l-i (H 1 [k xtp]}] D 1 (k)}rx. m• 

Here we must express the cyclic components of the 
vectors n and k in terms of the generalized 
spherical harmonics nh0(n), Dh0(k), and we 
must then eliminate products of the D -functions 
in accordance with the following rule 

By equating to zero the coefficient of cp we ob­
tain (in the intermediate steps of the calculation 
we make use of Racah's rule for combining three 
Clebsch-Gordan coefficients into one): 

Xz[l(l+ 1)-l'(l'+ 1}-ip] + (-)l-t'+rx1.[l'(l'+ I) 

-l (l + I)- ipJ (2l + I) 1 (2l' + I)= o. 
From this it follows that 

XI=C(2l-i-1)f(Z+ 1 +ipj2)jf(l+ 1-ip/2). 

On utilizing the unitarity condition (17) already 
mentioned in the main text we obtain, finally, 
formula (16). 

In order to obtain formula (20) we note that the 
function 

Qpm (n, k) = [1- (nk)]1-l ipf2 Upm.(n, k) (A.4) 

satisfies the same functional equation (A.1) which 
is satisfied also by U pm ( n, k), only we must set 
in it 1 +ip/2 = 0. From this it follows that 

_ v 21 + 1 -~ 1 
Qpm (n, k) - Apm Li 1 (l +D Dct.-m (n) Dam (k). 

1>- lml 

In order to find Ap, we set k = - n in (A.4). 
Since 

D1 (n) = R3 (cp + rr / 2) Rr (8), 

D1 (- n) = R3 (cp + 3rr I 2) Rl(-:r.- 8), 

then 

[D1 (n)-1 D1 (- n)J-m. m = [Rr (-B) Ra (rr) Rr (-:r.- B)]:_m, m 

= [Rr (- rr) Ra (-:r.)]:_m, m = C-imT< (- 1}21 (- It+-m e-imT<. 

Since 
~ _21 + 1 (- 1)1+m 

l:>imll (I+ 1) 

= ~ c~1 (-I)Z+m++(-I/+"')=(-1)2"'! 
1>-lml 

and, moreover, 

:z; (- 1 /+m (21 + I) r (l + I + ip / 2)! r (l + 1 - i;; 1 2) 
1>-lml 

= 2J. , ( _ 1 (~"' [ r u + 2+ir 1 2) + r u + 1 + ip 1 2)] 
l>-m f(l+l-ip/2) f(l-ip:2J 

= (- 1 )2 11! r (m + 1 + i[i I 2) I r (m- ip I 2), 

the proof of formula (20) is complete. 

APPENDIX B 

PROOF OF FORMULA (13) 

According to formula (1.9b), I, 

D5 (Lpn) D 5 (n) = D 5 (L;1 n) R3 (([! (Lp, n)). 

Further, from formula (A.2) of Appendix A in I 
it may be easily seen that 

L;1n-->-k. 
.\1 --~ 0 

Finally, we have, 
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[R (k)]-1 R (- k) 

= Rd- 8) R3 (-?-::! 2) Ra(-y-:: +"I 2) Rr(rc- tJ) 

=R3(-::)Rt(::), 

[D 5 (k)-1 D 5 (- k)]mn = [R 3 (- ::) R1 (rc)]~n = On--m (- l)S+m. 

Therefore, 

8(p, n) = limrp(Lp,n). (B.1) 
M--+0 

APPENDIX C 

PROOF OF FORMULA (25) 

In formula (A.1) we set 1 + ip/2 = 0, S = Lp, 
with cp ( S, k) = 0. Further, we let M tend to 
zero; we then have 

Qm (S-1 n, S-1 k) -> Qm (- k, k) = (- !) 5+M. 

Thus from (A.5) and (B.1) we obtain formula (25). 
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